ICAO ATNP SGB1 IP414

Raw IP Networking FAQ

Version 1.3

 Last Modified on: Thu Nov 11 18:18:19 PST 1999

 The master copy of this FAQ is currently kept at

 http://www.whitefang.com/rin/

 The webpage also contains material that supplements this FAQ, along

 with a very spiffy html version.

 If you wish to mirror it officially, please contact me for details.

Copyright

I, Thamer Al-Herbish reserve a collective copyright on this FAQ.

Individual contributions made to this FAQ are the intellectual

property of the contributor.

I am responsible for the validity of all information found in this

FAQ.

This FAQ may contain errors, or inaccurate material. Use it at your

own risk. Although an effort is made to keep all the material

presented here accurate, the contributors and maintainer of this FAQ

will not be held responsible for any damage -- direct or indirect --

which may result from inaccuracies.

You may redistribute this document as long as you keep it in its

current form, without any modifications. Please keep it updated if

you decide to place it on a publicly accessible server.

Introduction

The following FAQ attempts to answer questions regarding raw IP or

low level IP networking, including raw sockets, and network

monitoring APIs such as BPF and DLPI.

Additions and Contributions

If you find anything you can add, have some corrections for me or

would like a question answered, please send email to:

Thamer Al-Herbish <shadows@whitefang.com>

Please remember to include whether or not you want your email address

reproduced on the FAQ (if you're contributing). Also remember that

you may want to post your question to Usenet, instead of sending it

to me. If you get a response which is not found on this FAQ, and you

feel is relevant, mail me both copies and I'll attempt to include it.

Also a word on raw socket bugs. I get approximately a couple of

emails a month about them, and sometimes I just can't verify if the

bug exists on a said system. Before mailing in the report, double

check with my example source code. If it looks like it's a definite

bug, then mail it in.

Special thanks to John W. Temples <john@whitefang.com> for his

constant healthy criticism and editing of the FAQ.

Credit is given to the contributor as his/her contribution appears in

the FAQ, along with a list of all contributors at the end of this

document.

A final note, a Raw IP Networking mailing list is up. You can join by

sending an empty message to rawip-subscribe@whitefang.com

Caveat

This FAQ covers only information relevant to the UNIX environment.

Table of Contents

 1) General Questions:

 1.1) What tools/sniffers can I use to monitor my network?

 1.2) What packet capturing facilities are available?

 1.3) Is there a portable API I can use to capture packets?

 1.4) How does a packet capturing facility work?

 1.5) How do I limit packet loss when sniffing a network?

 1.6) What is packet capturing usually used for?

 1.7) Will I have to replace any packets captured off the network?

 1.8) Is there a portable API to send raw packets into a network?

 1.9) Are there any high level language APIs (Not C) for raw IP

 access?

 2) RAW socket questions:

 2.1) What is a RAW socket?

 2.2) How do I use a raw socket?

 2.2.1) How do I send a TCP/IP packet through a raw socket?

 2.2.2) How do I build a TCP/IP packet?

 2.2.3) How can I listen for packets with a raw socket?

 2.3) What bugs should I look out for when using a raw socket?

 2.3.1) IP header length/offset host/network byte order

 (feature/bug?)

 2.3.2) Unwanted packet processing on some systems.

 2.4) What are raw sockets commonly used for?

 3) libpcap (A Portable Packet Capturing Library)

 3.1) Why should I use libpcap, instead of using the native API on

 my operating system for packet capturing?

 3.2) Does libpcap have any disadvantages which I should be aware

 of?

 3.3) Where can I find example libpcap source code?

 4) List of contributors

 1) General Questions:

 1.1) What tools/sniffers can I use to monitor my network?

 Depending on your operating system, the following is an

 incomplete list of available tools:

 tcpdump: Found out-of-the-box on most BSD variants, and

 also available separately from

 ftp://ftp.ee.lbl.gov/tcpdump.tar.Z along with

 libpcap (see below) and various other tools. This

 tool, in particular, has been ported to multiple

 platforms thanks to libpcap.

 ipgrab Compatible with many systems. ipgrab displays

 link level, transport level, and network level

 information on packets captured verbosely.

 http://www.xnet.com/~cathmike/MSB/Software/

 Ethereal (GUI) A network packet analyzer (uses GTK+).

 Supports many systems. Available at:

 http://ethereal.zing.org/

 tcptrace:

 http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

 Not an actual sniffer, but can read from the logs

 produced by many other well known sniffers to

 produce output in different formats and in

 adjustable details (includes diagnostics).

 tcpflow

 http://www.circlemud.org/~jelson/software/tcpflow/

 tcpflow is a program that captures data

 transmitted as part of TCP connections (flows),

 and stores the data in a way that is convenient

 for protocol analysis or debugging.

 snoop: Solaris, IRIX.

 etherfind: SunOS.

 Packetman: SunOS, DEC-MIPS, SGI, DEC-Alpha, and Solaris.

 Available at

 ftp://ftp.cs.curtin.edu.au:/pub/netman/

 nettl/ntfmt: HP/UX

 1.2) What packet capturing facilities are available?

 --

 Depending on your operating system (different versions may

 vary):

 BPF: Berkeley Packet Filter. Commonly found on BSD

 variants.

 DLPI: Data Link Provider Interface. Solaris, HP-UX, SCO

 Openserver.

 NIT: Network Interface Tap. SunOS 3.

 SNOOP: (???). IRIX.

 SNIT: STREAMS Network Interface Tap. SunOS 4.

 SOCK_PACKET: Linux.

 LSF: Linux Socket Filter. Is available on Linux 2.1.75

 onwards.

 drain: Used to snoop packets dropped by the OS. IRIX.

 1.3) Is there a portable API I can use to capture packets?

 --

 Yes. libpcap from ftp://ftp.ee.lbl.gov/libpcap.tar.Z attempts

 to provide a single API that interfaces with different

 OS-dependent packet capturing APIs. It's always best, of

 course, to learn the underlying APIs in case this library

 might hide some interesting features. It's important to warn

 the reader that I have seen different versions of libpcap

 break backward compatibility.

 1.4) How does a packet capturing facility work?

 The exact details are dependent on the operating system.

 However, the following will attempt to illustrate the usual

 technique used in various implementations:

 The user process opens a device or issues a system call which

 gives it a descriptor with which it can read packets off the

 wire. The kernel then passes the packets straight to the

 process.

 However, this wouldn't work too well on a busy network or a

 slow machine. The user process has to read the packets as

 fast as they appear on the network. That's where buffering

 and packet filtering come in.

 The kernel will buffer up to X bytes of packet data, and pass

 the packets one by one at the user's request. If the amount

 exceeds a certain limit (resources are finite), the packets

 are dropped and are not placed in the buffer.

 Packet filters allow a process to dictate which packets it's

 interested in. The usual way is to have a set of opcodes for

 routines to perform on the packet, reading values off it, and

 deciding whether or not it's wanted. These opcodes usually

 perform very simple operations, allowing powerful filters to

 be constructed.

 BPF filters and then buffers; this is optimal since the

 buffer only contains packets that are interesting to the

 process. It's hoped that the filter cuts down the amount of

 packets buffered to stop overflowing the buffer, which leads

 to packet loss.

 NIT, unfortunately, does not do this; it applies the filter

 after buffering, when the user process starts to read from

 the buffered data.

 According to route <route@infonexus.com> Linux' SOCK_PACKET

 does not do any buffering and has no kernel filtering.

 Your mileage may vary with other packet capturing facilities.

 1.5) How do I limit packet loss when sniffing a network?

 --

 If you're experiencing a lot of packet loss, you may want to

 limit the scope of the packets read by using filters. This

 will only work if the filtering is done before any buffering.

 If this still doesn't work because your packet capturing

 facility is broken like NIT, you'll have to read the packets

 faster in a user process and send them to another process --

 basically attempt to do additional buffering in user space.

 Another way of improving performance, is by using a larger

 buffer. On Irix using SNOOP, the man page recommends using

 SO_RCVBUF. On BSD with BPF one can use the BIOCSBLEN ioctl

 call to increase the buffer size. On Solaris bufmod and pfmod

 can be used for altering buffer size and filters

 respectively.

 Remember, the longer your process is busy and not attending

 the incoming packets, the quicker they'll be dropped by the

 kernel.

 1.6) What is packet capturing usually used for?

 (Question suggested by Michael T. Stolarchuk <mts@rare.net>

 along with some suggestions for the answer.)

 Network diagnostics such as the verification of a

 network's setup, examples are tools like arp, that report

 the ARP messages sent from hosts.

 Reconstruction of end to end sessions. tcpshow attempts

 to do this, but more sophisticated examples are the array

 of security tools which try to keep tabs on network

 connections.

 Monitoring network load. Probably one of the most

 practical uses, a lot of commercial products usually use

 specialized hardware to accomplish this.

 1.7) Will I have to replace any packets captured off the

 network?

 --

 No, the packet capturing facilities mentioned make copies of

 the packets, and do not remove them from the system's TCP/IP

 stack. If you wish to prevent packets from reaching the

 TCP/IP stack you need to use a firewall, (which should be

 able to do packet filtering). Don't confuse the packet

 filtering done by packet capturing facilities with those done

 by firewalls. They serve different purposes.

 1.8) Is there a portable API to send raw packets into a

 network?

 --

 Yes, route <route@infonexus.com> maintains Libnet, a library

 that provides an API for low level packet writing and

 handling. It serves as a good compliment for libpcap, if you

 wish to read and write packets. The project's webpage can be

 found at:

 http://www.packetfactory.net/libnet/

 1.9) Are there any high level language APIs (Not C) for raw

 IP access?

 --

 A PERL module that gives access to raw sockets is available

 at:

 http://quake.skif.net/RawIP/

 A Python library "py-libpap" can be found at:

 ftp://ftp.python.org/pub/python/contrib/Network/

 2) RAW socket questions:

 2.1) What is a RAW socket?

 The BSD socket API allows one to open a raw socket and bypass

 layers in the TCP/IP stack. Be warned that if an OS doesn't

 support correct BSD semantics (correct is used loosely here),

 you're going to have a hard time making it work. Below, an

 attempt is made to address some of the bugs or surprises

 you're in store for. On almost all sane systems only root

 (superuser) can open a raw socket.

 2.2) How do I use a raw socket?

 2.2.1) How do I send a TCP/IP packet through a raw

 socket?

 --

 Depending on what you want to send, you initially open a

 socket and give it its type.

 sockd = socket(AF_INET,SOCK_RAW,<protocol>);

 You can choose from any protocol including IPPROTO_RAW.

 The protocol number goes into the IP header verbatim.

 IPPROTO_RAW places 0 in the IP header.

 Most systems have a socket option IP_HDRINCL which allows

 you to include your own IP header along with the rest of

 the packet. If your system doesn't have this option, you

 may or may not be able to include your own IP header. If

 it is available, you should use it as such:

 char on = 1;

 setsockopt(sockd,IPPROTO_IP,IP_HDRINCL,&on,sizeof(on));

 Of course, if you don't want to include an IP header, you

 can always specify a protocol in the creation of the

 socket and slip your transport level header under it.

 You then build the packet and use a normal sendto().

 2.2.2) How do I build a TCP/IP packet?

 Examples can be found at http://www.whitefang.com/rin/

 which attempt to illustrate the details involved. They

 also illustrate some of the bugs mentioned below.

 Briefly, you need to actually write the packet out in

 memory and hand it over to the socket where it will

 hopefully fire it away and await more packets.

 2.2.3) How can I listen for packets with a raw socket?

 --

 Traditionally the BSD socket API did not allow you to

 listen to just any incoming packet via a raw socket.

 Although Linux (2.0.30 was the last version I had a look

 at), did allow this, it has to do with their own

 implementation of the TCP/IP stack. Correct BSD semantics

 allow you to get some packets which match a certain

 category (see below).

 There's a logical reason behind this; for example TCP

 packets are always handled by the kernel. If the port is

 open, send a SYN-ACK and establish the connection, or

 send back a RST. On the other hand, some types of ICMP (I

 compiled a small list below), the kernel can't handle.

 Like an ICMP echo reply, is passed to a matching raw

 socket, since it was meant for a user program to receive

 it.

 The solution is to firewall that particular port if it

 was a UDP or TCP packet, and sniff it with a packet

 capturing API (a list is mentioned above). This prevents

 the TCP/IP stack from handling the packet, thus it will

 be ignored and you can handle it yourself without

 intervention.

 If you don't firewall it, and reply yourself you'll wind

 up having additional responses from your operating

 system!

 Here's a concise explanation of the semantics of a raw

 BSD socket, taken from a Usenet post by W. Richard

 Stevens

 From <rstevens@kohala.com> (Sun Jul 6 12:07:07 1997) :

 "The semantics of BSD raw sockets are:

 - TCP and UDP: no one other than the kernel gets these.

 - ICMP: a copy of each ICMP gets passed to each matching raw

 socket, except for a few that the kernel generates the reply

 for: ICMP echo request, timestamp request, and mask request.

 - IGMP: all of these get passed to all matching raw sockets.

 - all other protocols that the kernel doesn't deal with (OSPF,

 etc.): these all get passed to all matching raw sockets."

 After looking at the icmp_input() routine from the

 4.4BSD's TCP/IP stack, it seems the following ICMP types

 will be passed to matching raw sockets:

 Echo Reply: (0)

 Router Advertisement (9)

 Time Stamp Reply (13)

 Mask Reply (18)

 2.3) What bugs should I look out for when using a raw socket?

 2.3.1) IP header length/offset host/network byte

 (feature/bug?)

 --

 Systems derived from 4.4BSD have a bug in which the

 ip_len and ip_off members of the ip header have to be set

 in host byte order rather than network byte order. Some

 systems may have fixed this. I've confirmed this bug has

 been fixed on OpenBSD 2.1.

 2.3.2) Unwanted packet processing on some systems.

 --

 Thanks to Michael Masino <mmasino@mitre.org> , Lamont

 Granquist <lamontg@hitl.washington.edu> , and route

 <route@infonexus.com> for the submission of bug reports.

 Some systems will process some of the fields in the IP

 and transport headers. I've attempted to verify the

 reports I've received here's what I can verify for sure.

 Solaris (at least 2.5/2.6) and changes the IP ID field,

 and adds a Do Not Fragment flag to the IP header (IP_DF).

 It also expects the checksum to contain the length of the

 transport level header, and the data.

 Further reports which I cannot verify (can't reproduce),

 consist of claims that Solaris 2.x and Irix 6.x will

 change the sequence and acknowledgment numbers. Irix 6.x

 is also believed to have the problem mentioned in the

 previous paragraph. If you experience these problems,

 double check with the example source code.

 You'll save yourself a lot of trouble by just getting

 Libnet http://www.packetfactory.net/libnet/

 2.4) What are raw sockets commonly used for?

 --

 Various UNIX utilities use raw sockets, among them are:

 traceroute, ping, arp. Also, a lot of Internet security tools

 make use of raw sockets. However in the long run, raw sockets

 have proven bug ridden, unportable and limited in use.

 3) libpcap (A Portable Packet Capturing Library)

 --

 3.1) Why should I use libpcap, instead of using the native

 API on my operating system for packet capturing?

 --

 libpcap was written so that applications could do packet

 capturing portably. Since it's system independent and

 supports numerous operating systems, your packet capturing

 application becomes more portable to various other systems.

 3.2) Does libpcap have any disadvantages, which I should be

 aware of?

 --

 Yes, libpcap will only use in-kernel packet filtering when

 using BPF, which is found on BSD derived systems. This means

 any packet filters used on other operating systems which

 don't use BPF will be done in user space, thus losing out on

 a lot of speed and efficiency. This is not what you want,

 because packet loss can increase when sniffing a busy

 network.

 DEC OSF/1 has an API which has been extended to support

 BPF-style filters; libpcap does utilize this.

 In the future, libpcap may translate BPF style filters to

 other packet capturing facilities, but this has not been

 implemented yet as of version 0.3

 Refer to question 1.4 to see how packet filters help in

 reliably monitoring your network.

 3.3) Where can I find example libpcap source code?

 --

 A lot of the source code found at LBNL's ftp archive

 ftp://ftp.ee.lbl.gov/ uses libpcap. More specifically,

 ftp://ftp.ee.lbl.gov/tcpdump.tar.Z probably demonstrates

 libpcap to a large extent.

 4) List of contributors.

 Thamer Al-Herbish <shadows@whitefang.com>

 W. Richard Stevens <rstevens@kohala.com>

 John W. Temples (III) <john@whitefang.com>

 Michael Masino <mmasino@mitre.org>

 Lamont Granquist <lamontg@hitl.washington.edu>

 Michael T. Stolarchuk <mts@rare.net>

 Mike Borella <Mike_Borella@mw.3com.com>

 route <route@infonexus.com>

 Derrick J Brashear <shadow@dementia.org>

