Erreur! Source du renvoi introuvable.ATNP/WG2 Actions 5/11 and 5/12

\SET Doc_task "STA_ATNP" STA_ATNP

\SET Doc_type "DCO" DCO

\SET Doc_nr "40" 40

\SET Doc_author "Tony Whyman" Tony Whyman

\SET Doc_revno "Issue 1.0" Issue 1.0

\SET Doc_date "15-Sep-95" 15-Sep-95

\SET Doc_ref "DED1/ATNIP//Erreur! Source du renvoi introuvable./Erreur! Source du renvoi introuvable."
DED1/ATNIP/Erreur! Source du renvoi introuvable./Erreur! Source du renvoi introuvable./

 ATNP/SGB1/ WP114

Prepared by Stéphane Tamalet

(France)

Proposed Draft Guidance Material related to the PDR M0070002

(Deflate Compressed PDU Format)

AERONAUTICAL TELECOMMUNICATIONS NETWORK PANEL

SG-B1/1

Honolulu, Hawaii
27-28 Feb. 2001

SUMMARY

This Working Paper provides draft Guidance Material related to the PDR M0070002

TABLE OF CONTENTS

i1
Introduction

2
Deflate compressed PDU format
ii
2.1
General
ii
2.2
Format used to communicate a deflate compressed PDU
iii
2.3
Notes on the standard zlib implementations
v
2.3.1
Introduction
v
2.3.2
Technical details
v
2.3.3
The Z_PARTIAL_FLUSH option
vi
2.3.4
The Z_SYNC_FLUSH option
vii

1 Introduction

This document provides draft Guidance Material related to the PDR M0070002. It has been prepared for input to WG-B.

The material is proposed to be inserted in a new section 3.3.4.6.3.5, just before the current CAMAL section 3.3.4.6.3.5 "Deflate Compression Options"

Deflate compressed PDU format

1.1 General

Data submitted to a deflate compressor results into a compressed stream that comprises one or more Deflate Data Blocks of arbitrary length, as illustrated by the figure bellow.

Data Block 1
Data Block 2
…
Data Blocks n-1
Data Block n

Each Deflate Data block comprises a 3-bit header (H), that indicates the compression type applied to the data in the block, and a stream of self-delimited compressed data. This is illustrated by the figure below:

H
Compressed Data

A Deflate data block does not necessarily occupy an integral number of bytes. As a consequence, the header bits of a Deflate data block do not necessarily begin on a byte boundary.

There are 3 different types of Deflate Data blocks:

1. The Uncompressed Data Blocks

2. The blocks compressed with fixed Huffman codes

3. The blocks compressed with dynamic Huffman codes

Each type of block corresponds to a different compression strategy. When compressing data, the compressor may decide to change between either one of these strategies at any time for the purpose of achieving a better compression. The procedure by which the compressor determines that there is a benefit in changing from one compression strategy to another one is left as a local matter to the implementers. Implementers may refer to the 'zlib' public domain implementation of the Deflate for possible solutions to this issue.

The Uncompressed Data Blocks are used when the encoder determines that there is no benefit in compressing the Data. In blocks of such a type, the data is not compressed at all; the block simply includes an exact copy of the data supplied to the encoder. The format of an uncompressed data block is represented herebelow.

H
3 bits
Padding 0
LEN
NLEN
LEN bytes of literal data

Where:

· The 3-bit header is right padded with zeroes to the next octet boundary.

· LEN (2 octets) gives the number of octets of literal data in the block (the number of octets that have been copied from the original uncompressed PDU)

· NLEN (2 octets) is the ones complement to the value of the LEN field

· The end of the block comprises the LEN bytes that have been copied from the original uncompressed PDU

An uncompressed Data Block always ends at a byte boundary.

The blocks compressed with fixed Huffman codes include sequences of fixed (pre-determined) Huffman codes representing either literal bytes, or <length, backward distance pairs>. The fixed Huffman codes are standard codes which are expected to be a priori known by the compressor and the decompressor. These codes represent an initial "guess" as to the entropy of the original data stream and hence what are the corresponding optimal Huffman codes. The value of the fixed Huffman codes are specified in Doc 9705.

A block compressed with fixed Huffman codes is structured as represented in the next figure:

H
Sequence of fixed Huffman codes
End of Block code
7 bits to 0

The block consists of the 3-bit header, followed by sequences of fixed (pre-determined) Huffman codes representing either literal bytes, or <length, backward distance pairs>, and terminated by the "End-of-Block' Code (7 bits to 0). Thanks to the 'end of block code', the block is self delimiting without requiring an explicit length indicator.

Such a block does not necessarily end at a byte boundary.

The blocks compressed with dynamic Huffman codes also include sequences of Huffman codes representing either literal bytes, or <length, backward distance pairs>. However they are used, when the analysis of the data stream has revealed to the compressor that the use of a new set of Huffman codes (different from the fixed set) would allow achieving a better compression. In that case, the new set of dynamically determined Huffman codes is included within the data block before the compressed data.

A block compressed with dynamic Huffman codes is structured as represented in the next figure:

H
HLIT
5 bits
HDIST
5 bits
HCLEN
4 bits
Code lengths alphabet
Literal/length alphabet
Distance alphabet
Sequence of dynamic Huffman codes
End of Block code

Following the 3-bit header, the second to the seventh field are used to convey the set of dynamically determined Huffman code Tables. This is followed by sequences of dynamic Huffman codes representing either literal bytes, or <length, backward distance pairs>, and terminated by the "End-of-Block' Code. The block is self-delimiting without requiring an explicit length indicator.

Such a block does not necessarily end at a byte boundary.

1.2 Format used to communicate a deflate compressed PDU

The Deflate mechanism is a general-purpose lossless compression method that can be used in many different contexts, for example in an archive system to reduce the size of files to be stored, or in association with an electronic mail application to reduce the size of the messages being exchanged.

In each case, whatever the actual recipient of the compressed data (e.g. an archive file, a compressed mail, or data packets exchanged over some media between two protocol entities) one must specify a format for storing the deflate compressed data (i.e. the sequences of deflate data blocks) in this actual recipient.

When used in the context of the ATN ISO/IEC 8208 mobile SNDCF, for compressing PDUs before their transmission over a mobile subnetwork, the deflate compressed PDUs are expected to be formatted as follows.

A Deflate compressed packet exchanged over a mobile subnetwork comprises:

· a variable length, octet aligned, encoded data stream

· followed by a two-octet Frame Check Sum (FCS)

Encoded Data Stream
FCS

The Encoded Data Stream consists of a series of "Deflate Data Blocks" of arbitrary length, as illustrated by the figure below.

Possible residual bits from the previous empty terminating data block
Data Block 1
Data Blocks 2 (((n-1
Data Block n
Possible empty Data block truncated at an octet boundary
FCS

As can be observed on the above figure, the encoded data stream does not necessarily start with a complete Deflate Data Block. The specification of Deflate Compressed PDU format allows for an empty Deflate Data block to straddle two subsequent Deflate compressed packets. In that particular case, a first part of this empty data block terminates the "encoded data" and the remainder of the empty compressed data block will start the next transmission.

However, the first packet exchanged after the establishment or the reset of a subnetwork connection is always expected to start with a complete Deflate Data Block. That means that this first packet must necessarily start with the 3-bit header of a Deflate Data Block. This rules also applies when the options for the use of pre-stored deflate dictionaries or for the maintenance of the Deflate history windows are selected. Implementers are advised to check that after having pre-loaded the compressor history window with the content of a dictionary or with the content of a previous history window being maintained, the compressor does not find itself into a state, where some residual bits will be pre-pended to the first compressed PDU being transmitted. This is a typical error.

The empty Deflate Data Block that is allowed to span transmission frames is used for the purpose of finding a location in the deflate compressor output data where that data can be cut at a true byte boundary before being packetized and transmitted over the mobile subnetwork. Indeed, as explained before, compressed data do not necessarily occupy an integral number of octets, and there may be therefore a need for padding that data with 'to be ignored' information until a byte boundary is reached. An empty Deflate Data Block can fulfil the role of that 'to be ignored' padding information. Indeed, an empty Deflate Data block has the nice property of being totally transparent to the remote decompressor: its presence in the data stream has no effect on the result of the decompression procedure; a compressed PDU containing such a block will give the same result, once uncompressed, as the one that would be obtained from the compressed PDU without that block.

The use of empty Deflate Data Block, spanning two subsequent frame, is a behaviour that is compatible with the use of the Z_PARTIAL_FLUSH option of the industry standard zlib software package. This is further explained in the next section.

From the above, it follows that the deflate decompressor (on receiver side), must be able to process a new compressed packet as the logical continuation of the preceding packet. There may be some cases, when an empty deflate data block straddle two subsequent packets, where the decompressor will have to wait for the subsequent packet to arrive before being in a position to complete the processing of that empty block. However, the format used to exchange deflate compressed PDU guaranties that each compressed packet exchanged over the subnetwork includes a complete compressed PDU. Deflate data blocks that encode useful information are never sent in two parts over two subsequent packets. On receipt of a packet, the decompressor gets therefore all the elements needed to expand the data and recover the original PDU, and is not expected to wait for subsequent packets before performing this task.

1.3 Notes on the standard zlib implementations

1.3.1 Introduction

The 'zlib' is a public domain and well-proven implementation of the deflate compression and decompression functions. The zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not covered by any patents -- deflate data-compression library for use on virtually any computer hardware and operating system. The source code of the library is available on the world wide web, notably at the following URL: http://www.info-zip.org/pub/infozip/zlib/.

1.3.2 Technical details

The 'zlib' library provides in-memory deflate compression and decompression functions. For compression, the application must provide the deflate() function with an input buffer containing the data to be compressed and with an output buffer where the compressed data is to be stored. For decompression, the application must provide the inflate() function with an input buffer containing the compressed data and with an output buffer where the uncompressed data is to be stored.

Compression/decompression can be done in a single step if the input (resp. output) are large enough, or can be done by repeated calls. In the later case, the zlib consider the new input (resp output) buffer as the logical continuation of the preceding input buffer (i.e. the first bit of the new input (resp. output) buffer is considered to follow directly the last bit of the preceding input buffer). In that case, the zlib user must provide more input and/or consume the output (providing more output space) before each call.

By default, the zlib compression procedure directly copies the compressed data in the output buffer. However, there are 2 exceptions:

· When the output buffer is full, the compression procedure can accept further input data to process, however, the resulting compressed data is kept in an internal buffer of the zlib, and not directly accessible to the zlib user. In that case, in order for the user to get the compressed data, the compression function must be recalled providing more output space (e.g. providing a new (empty) output buffer).

· When the resulting compressed data does not end at an octet boundary, the compression procedure stores in the output buffer all integral bytes of compressed data but keeps the last bits of the last octet in an internal bit buffer. These last bits will be concatenated with the next bits of compressed data, when the compression procedure is recalled to process further input data. We will see that these last bits can be flushed out of the zlib internal buffer if there is no further input data to process.

The compression procedure manages the creation of Deflate Data block in a way totally opaque to the zlib user. The zlib compression procedure may decide at any time to terminate a deflate data block and to open a new one, depending on the best way to achieve optimal compression. There, it must be noted that the zlib compression procedure does not necessarily terminate a Deflate Data block, when it has finished to process an input buffer. By default, the compression procedure keeps the current output deflate data block open, and waits for further input data to compress in the context of this block. Hence, a Deflate Data Block can span over several subsequent output buffers.

Considering the above, when the zlib is used to compress a CLNP PDU the following occurs by default:

· If the compressed data does not fit in an integral number of octet, the last residual bits remain stored in the zlib internal bit buffer and are not accessible to the zlib user, until a new PDU is given to the compressor.

· In the compressed data, the last Deflate Data Block is not terminated.

This could be a problem, to build an compressed data packet that is compliant to the ATN Technical Provisions. Indeed, the ATN Technical Provisions requires that Deflate Data Block containing useful information be wholly contained within a single transmitted packet. The Deflate Data Block must therefore be terminated before being transmitted as part of compressed packet. Hopefully, the zlib compression procedure provides the user with options that allows forcing the termination of the current compression block, and flushing that compression block to the output buffer so that the user can get all the compressed data available so far.

Among the set of available options, the following two are particularly well suited for use as a way to generate compressed packet the format of which is compatible with the ATN technical provisions:

· The Z_PARTIAL_FLUSH option

· The Z_SYNC_FLUSH option

These two options are briefly described in the following two sections.

1.3.3 The Z_PARTIAL_FLUSH option

When the Z_PARTIAL_FLUSH option is set, the zlib compression function behaves as follows:

1. The compression procedure terminates the current data block (for instance by appending an 'End Of Block' Symbol at the end of the compressed data),

2. Next, the procedure appends one or two empty Deflate Data Block(s) of the type "compressed with fixed Huffman code". Such empty Data blocks are ten-bits long and have the following form:

H
3bits
(010)
End of Block code
7 bits to 0

3. Finally, the procedure copies the compressed data into the output buffer, with the exception of the last trailing bits if the compressed data does not fit in an integral number of octets. These possible trailing bitswill remain stored in the internal zlib bit buffer, until the compression function is re-invoked to compress new data.

Therefore, when the Z_PARTIAL_FLUSH compression option is used to compress an NPDU, the resulting format of the compressed NPDU is compatible with the ATN Technical Provisions (at the exception of the FCS fields that remains to be appended to the frame).

1.3.4 The Z_SYNC_FLUSH option

The Z_SYNC_FLUSH option also allows forcing the termination of the current Deflate Data Block and flushing that compression block to the output buffer. However the way it does so differs from the method of the Z_PARTIAL_FLUSH.

Before flushing the compressed data to the output buffer, the Z_SYNC_FLUSH terminates the current deflate data block, and appends an extra empty "uncompressed" deflate data block.

An empty "uncompressed" block has the following form:

H
(000)
Padding 0s
LEN
(00 00)
NLEN
(FF FF)

An empty "uncompressed" block has the same property as the empty "compressed" block being inserted when the Z_PARTIAL_FLUSH option is used: it will be totally transparent to the decompressor (its presence has no effect on the result of decompression procedure).

However, an empty "uncompressed" block has the following additional property: the end of an "uncompressed" block is systematically aligned on an octet boundary. Therefore, the zlib compression function does not need in this case to truncate that empty block when flushing out the data. There are no trailing bits internally kept by the library. Consequently, there will be no such trailing bits prepended at the head of the subsequent compressed packets.

When the Z_PARTIAL_FLUSH compression option is used to compress an NPDU, the resulting format of the compressed NPDU is also compatible with the ATN Technical Provisions (at the exception of the FCS fields that remains to be appended to the frame).

The benefit of this option is that there is no empty deflate data block spanning over 2 subsequently transmitted packets. With this option, the compressed packets always start and terminate at a clean Deflate Data Block Boundary.

The downside of this option, however, is that 3 or 4 extra octets (as compared with the Z_PARTIAL_FLUSH option) are systematically appended to the end of the compressed data.

The 3 to 4 octets per packet overhead introduced by the use of Z_SYNC_FLUSH option should incite the developers to prefer the Z_PARTIAL_FLUSH option for the encoding of compressed packets before their transmission. However, the developers are invited to note that the Z_SYNC_FLUSH option is of a prime interest for the purpose of resynchronizing the compressor and the decompressor at a clean byte boundary subsequently to the loading of a pre-stored dictionary or on completion of the procedure for the maintenance of the Deflate history windows.

08/09/00
Draft 0.1Issue 1.0
i

