ATNP WG1SG2

WP1906

AERONAUTICAL TELECOMMUNICATION NETWORK PANEL (ATNP)

WG1 – System Planning and Concept Woroking Group

SG2 – Security Sub-Group

May 8th, 2000

Prepared by G. Mittaux-Biron
Centre d’Etudes de la Navigation Aérienne (CENA)

This paper presents the CENA/FRAVI activities, launched as part of the validation activities of Doc 9705 edition 3, provides a brief status of validation progress for CENA/FRAVI, and provides an initial set of comments on sub-volume VIII chapter 6. WG1SG2 is invited to review these comments.

References

[1]
International Civil Aviation Organization (ICAO)

ATNP/3-WP/7 Appendix

- Proposed Draft Third Edition (Version 1.0) of Doc 9705 –

Manual of Technical Provisions for the Aeronautical Telecommunication Network (ATN).

Sub-volume VIII : ATN security Services
Version 1.0, December 1999, Tokyo

 [2]
International Civil Aviation Organization (ICAO)

ATNP/3-WP/7 Appendix

- Proposed Draft Third Edition (Version 1.0) of Doc 9705 –

Manual of Technical Provisions for the Aeronautical Telecommunication Network (ATN).

Sub-volume IV : Upper Layers Communication Service
Version 1.0, December 1999, Tokyo

 [3]
International Civil Aviation Organization (ICAO)

ATNP WG1/SG2 WP 1808A

Application Security Solution For the Aeronautical Telecommunications Network
Columbia 18-19 January 2000, Revised 3 February 2000

Introduction

In the frame of the FRAVI project, CENA is mainly involved in the upper layers (SV 4) and application (SV 2) validation activities. In the frame of security (SV 8), our main point of participation for validation is the chapter 8.6 Security System Object (SSO).

Briefly stated, our progress in validation activities can be summarised as follows:

1) ATN ASEs:

a. With the exception of GACS, the full set of air-ground ATN ASEs conforming to SARPs edition 2 has been developed,

b. Tests campaigns have been conducted between CHARME (Package 1) and FRAVI (Package 2) platforms,

c. No test campaign has been conducted with implementation made outside the DGAC.

2) Upper layers:

a. Both connection oriented and connectionless specifications (Dialogue, ACSE, Presentation and Session) have been implemented, with the restriction of the S-ASO which development is still in progress,

b. Tests campaign have been conducted between CHARME (Package 1) and FRAVI (Package 2) platforms,

c. Tests campaign have been conducted between FRAVI (Package 2) and EUROCONTROL platforms.

3) SSO:

a. As the development activities in progress do not yet permit to provide inputs for this validation activity of the 8.6, the method adopted was to trace “by hand” the upper layers services activations and the SSO function calls.

Global results, including feedback for the upper layers (Dialogue control function (DCF) and Security ASO (S-ASO)), tests reports…etc, will be presented later. This paper only focuses on the results obtained for the SSO.

This paper is organized as follow:

1. Presents a summary of the issues raised during this validation activity, grouped by type:

a. Structural issues: which address the global structure of the SARPs; in this kind of issues, we will find information localisation issues, for example.

b. Interfacing issues: the aim of the SSO is to provide a high level interface between the S-ASO and the basic encryption procedures.
 Interfacing issues will address non conformance between what is expected by the S-ASO and what is actually described in the SSO.

c. Implementation issues: SARPs should not restrict the way functions will be implemented. As any normative document, they describe a straight list of actions which shall be accomplished in order to fulfil the functionality. Implementation issues will address points where the description is too close to implementation (functional specification, algorithmic descriptions, functions calls…) leading to potentially constraint the possible choices for implementers.

d. Validation issues: each shall statement should be candidate to validation activity. Validation issues will address points where shall statements cannot be validated.

e. Errors and inconsistency issues: error and inconsistency in the description will be addressed here. We will only include here blocking issues, which prevent development of the SSO, or impossibility for a function to fulfil its functionality, or may lead to inter-operability issues,

f. Formalism issues: although non blocking, these issues, when corrected, enhance the description and remove potential ambiguities.

g. Insufficient or missing definitions issues: these points will address references, data, functions… for which a precise definition is needed and could not be found.

h. Coherence issues: which address point where there is non coherence inside the SSO or between the SSO and the S-ASO.

i. Typo issues.

j. Functional issues: this will address points where a functionality is insufficiently or not at all described.

k. Complexity issues: this will address points of unnecessary complexity in the description.

2. Presents for each function exposed by the SSO, the comments and proposed modifications in the SSO in order to solve the associated issue. As the number of comments may cause difficulties in the reading, the resulting modified proposed description of the function is given following the comment table.

3. Presents our conclusions.

1. Summary of issues

a. Structural issues
These issues address comments on:

- 8.6.2.1, 86.6.2.1, 8.6.2.1.1 Note 1 and Note 2: although we then agreed to include these statements here during Gran Canaria meeting, it sounds now rather strange to read statements pertaining to encoding of data in this sub-volume which only deals with computing and checking security appendixes and retrieving or filling data structures; furthermore, we will need to include the same kind of statement where data is encoded, idem est, the sub-volume 4.

- 8.6.4: somewhat the same kind of comment; everything will be encoded in the upper layers communication, the only purpose of having these ASN.1 definitions here, is because they contain security related data.

b. Interfacing issues
These issues address comments on:

- 8.6.3.1 Notes 3 and 4, 8.6.3.3 Notes 3 and 4, 8.6.3.4 Notes 3 and 4, 8.6.3.5 Note 2 and 3, 8.6.3.5.1 a), 8.6.3.7 Notes 2 and 4, 8.6.3.8 Note 2, 8.6.3.9 Notes 2 and 3, 8.6.3.10 Note, and 8.6.3.11.1 b).

The SSO interpretation of Calling peer and Called peer is totally different from the one use elsewhere in the SARPs:

a) The SSO considers that the Calling peer is the one which called the SSO-Function and that the Called peer is the one who initially compute the appendix, or the one who will receive the appendix.

b) Usually, Calling and Called peer refer to initiator and receiver of the dialogue or data.

These issues must be solved, because they led to real interface problems between the S-ASO and the SSO (inversion of peers identification, for example). Solutions have been proposed together with the detailed comments.

- 8.6.3.5 Note 1.

The computation of the session key is based on the use of a random value, which is computed by the receiver of the key management exchange and then sent to the initiator. This information was absent in the SSO-SessionKey interface definition, preventing the functionality to process correctly.

This issue must be solved, because it led to real interface problems between the S-ASO and the SSO. Solution has been proposed together with the detailed comments.

- 8.6.3.11.1 b) and 8.6.3.13 Note 1.

These issues address interface coherency inside the SSO.

c. Implementation issues
- 8.6.3.1.1 a) and b), 8.6.3.2.1 a) and b), 8.6.3.3.1 a) and b), 8.6.3.4.1 a) and b), 8.6.3.7.1 b). These comments address the fact that the SSO has been described using a functional breakdown approach leading to the definition of sub-procedures.

The main concern with this is that it can be useful for a given development approach, but that it can constraint other approaches. And this should be avoided. A SSO-Function description should only contain a list of actions, without nesting, which all pertain to the SSO-Function functionality, and nothing else. Even if such an approach leads to some repetitions in the description, it permits to de-correlate the different functions. Implementer are then free to group similar functionality , if needed.

- 8.6.3.1 Note 6 and 7, 8.6.3.2 Note 8, 8.6.3.3 Note 6, 8.6.3.4 Note 7, 8.6.3.5 Note 5, 8.6.3.6. Note 3, 8.6.3.7 Note 5, 8.6.3.8 Note 5.

These comments relate to an agglomeration of both functional results (the appendix was valid, the certificate was not revoked… etc), implementation results. The former deals with exception handling, while the latter deals with local implementation concerns, and should not be addressed here.

- 8.6.3.3.3 Note, 8.6.3.5 Note 6, 8.6.3.6.12.1 b, Note 1, c) and Note 2, 8.6.3.13.3 and 8.6.3.13.4, 8.6.3.8 b) and c).

These comments deal with various cases of implementation issues: the first one is reference to implementation objects (counters, global variables) instead of a reference to statements where they can be retrieved (random value, session key…etc), or a higher level statement (counters).

d. Validation issues
- 8.6.3.1.1 a) and b), 8.6.3.2.1 a), 8.6.3.3.1 a) and b), 8.6.3.4.1 a), 8.6.3.5.1 b), 8.6.3.5.1.2, 8.6.3.8.1, 8.6.3.10.1 d), 8.6.3.1.11 c), 8.6.3.12.3 f).

Theses comments express the concern that SSO-Functions are not defined as communication services. They are rather a facility proposed to the implementers who want to separate the purely communication facilities and the security facilities. The idea behind these comments was that internal function calls should be distinguished from real service activations as found in communication services. The shall statement should deal with accomplishing functionality rather than with function call.

- 8.6.3.5.1.1, 8.6.3.5.1.3, 8.6.3.5.1.6, 8.6.3.5.1.8, 8.6.3.6.1.1, 8.6.3.6.1.3, 8.6.3.6.1.4., 8.6.3.7.2., 8.6.3.7.3., 8.6.3.8.2, 8.6.3.10.1.3, 8.6.3.9 a), 8.6.3.10.1.4 a) and b)8.6.3.10.1.4 d), 8.6.3.11.2, 8.6.3.11.3 e), 8.6.3.11.3.2, 8.6.3.11.3.3.

These comments address the fact that these shall statements relate to actions that cannot be validated (SSO shall stop statements), and to the fact that an error handling should be defined for the SSO.

e. Inconsistency issues
- 8.6.3.6: this comment relates a difference between the parameters used to activate a SSO-Function (SSO-CertificateCheck) by another SSO-Function (SSO-AVP).

- 8.6.3.7.4: this comment relates a difference between the accepted value of an input parameter in a SSO-Function (SSO-GetCertificatePath) and the values provided by the S-ASO.

- 8.6.3.11.1 b): this comment address the fact that the SSO-Function (SSO-AVP) refers to an input parameter which is not provided by a calling SSO-Function (SSO-ProtectSignCheck).

- 8.6.3.12.3 a), d) and e): this comments address the fact that a SSO-Function (SSO-AMACP) refers to an input parameter which is not provided by a calling SSO-Function (SSO-Sign). It also refers to inconsistency between the SSO and a reference document.

- 8.6.3.12.3.3 b): this comment deals with the fact that grouping of functionalities under internal SSO-Function has been done without taking into consideration the fact that similar functionality are tasked to build different objects.

- 8.6.3.13.1 a): this comment deals with the fact that a SSO-Function (SSO-AMACVP) expect an input parameter which is not provided as a parameter.

- 8.6.3.13.1 b): this comment addresses the fact that a SSO-Function (SSO-AMACVP) performs functionality already performed somewhere else.

f. Form issues
- 8.6.3.1 Note 2, 8.6.3.2 Note 2, 8.6.3.11 Note 2, 8.6.3.10.1 b) and c), 8.6.3.10.1.1, 8.6.3.10.1.4 a) and b), 8.6.3.9 a), 8.6.3.8 Note 3, 8.6.3.7 Note 3, 8.3.6.1 Note, 8.6.3.6.1 b), 8.6.3.6.1.2, 8.6.3.5.1.4, 8.6.3.5.1.5, 8.6.3.5.1.7 a), b) and c), 8.6.3.5.1, 8.6.3.4 Note 2, 8.6.3.3 Note 2, 8.6.3.12 Note 2, 8.6.3.12.3 c), d) and e), 8.6.3.12.3.1 and Note, 8.6.3.13 Note 2, 8.6.3.15.5 b), 8.6.3.11.3.1 and Note.

g. Insufficient or missing definitions issues
- 8.6.3.2 Note 6, 8.3.12.1 a), 8.6.3.13.5 b) : relates to reference to information without specifying how to retrieve it (statement explaining where it has previously been retrieved or computed… and implicitly memorised).

- 8.6.3.9 b) and c): relates security functionality (check of replay on session keys) with important potential impacts on the communications and which is not described anywhere else.

- 8.6.3.8.3, 8.6.3.7.1 a)8.6.3.6. Note, 8.6.3.6.1 b) : relates to a statement not precise enough.

Detailled comments and proposed solutions

1.1 General processing requirements

1.1.1 Comments

8.6.2.1
The SSO is a collection of internal functionalities aiming at computing appendixes. It does not transfer anything, so encoding rules should not appear here. If there are restrictions or statements on encoding rules, they should appear in the S-ASO definition (SV 4.8), which is in charge of encoding.

8.6.2.1.1
This statement should be removed or moved somewhere else (SV 4 Chapter 8 is suggested).

8.6.2.1.1

Note 1 and

Note 2
These notes should be removed or moved somewhere else (SV 4 Chapter 8 is suggested).

1.1.2 Proposed modification

1.2 SSO-Sign function

1.1.3 Comments

8.6.3.1

Note 2
There should be an extensible ASN.1 structure defining the list of accepted Algorithm identifiers, instead of naming them here. This note should then be reworded as follows:

The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

8.6.3.1

Note 3 and

Note 4
According to SV 4, the Source peer is the initiator of the Dialogue and the Destination peer is the receiver of the Dialogue. As SSO-Sign can be called by both the initiator and the receiver of the Dialogue, this interpretation may cause inconsistency.

I would propose to refer to “Local peer” and resp. “Remote peer” instead of “Source peer” and resp. “Destination peer” in the interface definition, and to modify SV 4 accordingly.

8.6.3.1

Note 6 and

Note 7
The “Result” parameter refers to implementation considerations. Some implementation, which would not separate the code for the S-ASO and the cryptographic primitives won’t need such a parameter; for some other, the fact that the cryptographic primitive could be computed with success is clear by the fact that a result could be obtained. The “Result” parameter does not add anything in the SSO-Sign functionality and should therefore be removed from the definition of the SSO-Sign interface.

8.6.3.1.1

a) and b)
Stated like this, these statements cannot be validated. They should be reworded as follows:

The SSO-Sign function shall build the appendix as an ATNSignature using the functionality described in the:

a) SSO-ASP , if the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1,

b) SSO-AMACP, if the Algorithm Identifier is the abstract value associated to hmac-with-SHA1-32.

8.6.3.1.1

a) and b)
Furthermore, there is no justification for this intermediate function call. This leads to unnecessary constraints on the architecture of the implementation. We should rather propose the list of actions to be taken and leave implementers choose of they will group functionality under their implementation. I would propose to move the contents of SSO-ASP and SSO-AMACP here. This would lead to replace these statements with:

If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-Sign function shall:

a) retrieve the Local Peer’s signature private key.

b) Build the data to be signed as a SignData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current local system time as TimeField, and

d. the User Data as userData.

c) Compute the appendix using the functionality described in the ASP function, with the following inputs:

a. SignData takes the value of the data to be signed as built in babove,

b. d takes the value of the local peer signature private key as retrieved in a) above.

b) Build an atnSignature security item, with:

a. the algorithmIdentifier field unset,

b. the validity field set to a timeStamp containing the TimeField as generated in b) above,
c. the appendix field set to an ecdsa-Signature containing the signature computed in c) above.
If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-Sign function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Verify that the number of messages that have been sent between the Local and the Remote peers using the current session key does not exceed the maximum allowed.

Note.— The means used to do this control together with the maximum number of messages which can be sent using the current session key are a local implementation matter

c) Build the data for which an appendix has to be computed as a MacData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current number of the message sent from the local peer to the remote peer, as counter,

d. if this is the first MAC appendix computed for the exchange, the random value computed in 8.6.3.5.2, as random,

e. if this is the first MAC appendix computed for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a) as atnSignature,

f. the User Data as userData
d) Compute the appendix using the functionality described in the AMACP function, with the following inputs:

a. MacData takes the value of the data built in c) above,

b. MacKey takes the value of session key as retrieved in a) above.

e) Build an atnSignature security item, with:

a. the algorithmIdentifier field set to the Algorithm Identifier as specified as input,

b. the appendix field set to an hmac-Tag containing the appendix computed in d) above,

c. if this is the first MAC appendix computed for the exchange, the validity field set to a the random value computed in 8.6.3.5.2, as random.

Proposed modification

8.6.3.1 SSO-Sign function

Note 1.— The parameters of the SSO-Sign function are specified in Table 8.6-1.

Table 8.6‑1

Parameter Name
In
Out

Algorithm Identifier
M

Source Peer
M

Destination Peer
M

User Data
M

ATN Signature

C

Note 2.— The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

Note 3.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 4.— The Remote Peer parameter refers to the entity that is to receive the output of this function and is an ASN.1 type ATNPeerId.

Note 5.— The User Data parameter refers to the data that is to be signed.

Note 6.— The ATN Signature parameter is the result of the cryptographic primitive applied to User Data and is an ASN.1 type ATNSignature.

8.6.3.1.1 If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-Sign function shall:

a) Retrieve the Local Peer’s signature private key.

b) Build the data to be signed as a SignData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current local system time as TimeField, and

d. the User Data as userData.

c) Compute the appendix using the functionality described in the ASP function, with the following inputs:

a. SignData takes the value of the data to be signed as built in b) above,

b. d takes the value of the local peer signature private key as retrieved in a) above.

d) Return an atnSignature security item, with:

a. the algorithmIdentifier field unset,

b. the validity field set to a timeStamp containing the TimeField as generated in b) above,

c. the appendix field set to an ecdsa-Signature containing the signature computed in c) above.

8.6.3.1.2 If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-Sign function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Verify that the number of messages that have been sent between the Local and the Remote peers using the current session key does not exceed the maximum allowed.

Note.— The means used to do this control together with the maximum number of messages which can be sent using the current session key are a local implementation matter

c) Build the data for which an appendix has to be computed as a MacData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current number of the message sent from the local peer to the remote peer, as counter,

d. if this is the first MAC appendix computed for the exchange, the random value computed in 8.6.3.5.2, as random,

e. if this is the first MAC appendix computed for the exchange, the appendix field of the atnSignature previously computed in 8.6.3.1.1 c) or retrieved in 8.6.3.2.1 a) as atnSignature,

f. the User Data as userData
d) Compute the appendix using the functionality described in the AMACP function, with the following inputs:

a. MacData takes the value of the data built in c) above,

b. MacKey takes the value of session key as retrieved in a) above.

e) Return an atnSignature security item, with:

a. the algorithmIdentifier field set to the Algorithm Identifier as specified as input,

b. the appendix field set to an hmac-Tag containing the appendix computed in d) above,

c. if this is the first MAC appendix computed for the exchange, the validity field set to a the random value computed in 8.6.3.5.2, as random.
1.3 SSO-SignCheck function

1.1.4 Comments

8.6.3.2

Note 2
There should be an extensible ASN.1 structure defining the list of accepted Algorithm identifiers, instead of naming them here. This note should then be reworded as follows:

The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

8.6.3.2

Note 3 and

Note 4
According to SV 4, the Source peer is the initiator of the Dialogue and the Destination peer is the receiver of the Dialogue. As SSO-SignCheck can be called by both the initiator and the receiver of the Dialogue, this interpretation may cause inconsistency.

I would propose to refer to “Local peer” and resp. “Remote peer” instead of “Source peer” and resp. “Destination peer” in the interface definition, and to modify SV 4 accordingly.

8.6.3.2

Note 6
Replace “Source Peer” with “Local Peer”.

Replace “ATN Signature” with “appendix”.

8.6.3.2

Note 8
In most statements of this document, the “Result” parameter refers to implementation considerations. Here it refers to the fact that the appendix could be check and that the result of this check was positive. In order to avoid confusion with other definitions in this document, the “Result” parameter should be renamed; we would propose “CheckResult”.

8.6.3.2.1 a)
Stated like this, this shall statement cannot be validated. It should be reworded as follows:

The SSO-SignCheck function, verifies the Security Item using the functionality described in the:

a) SSO-AVP, if the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, and

SSO-AMACVP , if the Algorithm Identifier is the abstract value associated to hmac-with-SHA1-32.

and sets CheckResult accordingly.

Furthermore, there is no justification for this intermediate function call. This leads to unnecessary constraints on the architecture of the implementation. We should rather propose the list of actions to be taken and leave implementers choose of they will group functionality under their implementation. I would propose to move the contents of SSO-AVP and SSO-AMACVP here. This would lead to replace these statements with:

If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-SignCheck function shall:

a) (see comments on 8.6.3.11.1 a), and Note in comment table related to SSO-AVP)

b) Retrieve the Local Peer’s signing public key certificate path when the Security Item does not contain a Certificate Path.

Note.— The way the local peer signing public key certificate path is retrieved is a local implementation matter.

c) Retrieve the current CRLs necessary to validate the Local Peer’s signing public key certificate path when a CRL distribution service
 can be accessed.

Note.— The method of retrieval of the CRLs is a local matter.

d) Verify that the Certificate is not revoked by checking in the current CRL.

e) Retrieve the signing public key from the subjectPublicKey field of the Local Peer’s signing public key certificate.

f) Build the data to be signed as a SignData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the contents of the timeStamp component of the atnEstablish security item time as TimeField, and

d. the User Data as userData.

g) Set the checkResult according to:

a. The fact that the Local Peer’s signing public key certificate is not revoked,

b. The result of the validity check on the certificate path as described in 8.4.5,

c. The result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AVP function, with the following inputs:

i. SignData’ takes the value of the data to be signed as built in f) above,

ii. r’ and s’ take the content of the appendix field of the atnSignature security exchange item, and

iii. Q takes the value of the signing public key as retrieved in b) above.

If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-SignCheck function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Update the number of messages exchanged from the Remote peer to the Localpeer and verify that it does not exceed the maximum permitted.

c) Build the data for which an appendix has to be checked as a MacData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the current number of the message exchanged from the Remote peer and the Local peer, as counter,

d. if this is the first MAC appendix checked for the exchange, the random value computed in 8.6.3.5.2, as random,

e. if this is the first MAC appendix checked for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a) as atnSignature,

f. the User Data as userData

d) Set the checkResult according to the result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AMACVP function, with the following inputs:

a. MacData takes the value of the data built in d) above,

b. MacTag’ takes the contents of the appendix field of the atnSignature field of the security item.

c. MacKey takes the value of session key as retrieved in a) above.

Proposed modification

8.6.3.2 SSO-SignCheck function

Note 1.— The parameters of the SSO-SignCheck function are specified in Table 8.6-2.

Table 8.6‑2

Parameter Name
In
Out

Algorithm Identifier
M

Local Peer
M

Remote Peer
M

User Data
M

Certificate path
C

Security Item
M

CheckResult

2. M

Note 2.— The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

Note 3.— The Remote Peer parameter refers to the entity that generated the signature to be verified and is an ASN.1 type ATNPeerId.

Note 4.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 5.— The User Data parameter refers to the data whose security item is to be verified.

Note 6.— The Security Item parameter is the security item received from the Local Peer and is an ASN.1 type ATNSignature. It contains the appendix to be verified.

Note 7.— The conditions under which Certificate Path is present are described in 4.8.5.2.

8.6.3.2.1 If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-SignCheck function shall:

a) (see comments on 8.6.3.11.1 a), and Note in comment table related to SSO-AVP)

b) Retrieve the Remote Peer’s signing public key certificate path when the Security Item does not contain a Certificate Path.

Note.— The way the local peer signing public key certificate path is retrieved is a local implementation matter.

c) Retrieve the current CRLs necessary to validate the Remote Peer’s signing public key certificate path when a CRL distribution service
 can be accessed.

Note.— The method of retrieval of the CRLs is a local matter.

d) Verify that the Remote Peer’s signing public key certificate is not revoked by checking in the current CRL.

e) Retrieve the Remote’s Peer signing public key from the subjectPublicKey field of the Remote Peer’s signing public key certificate.

f) Build the data to be signed as a SignData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the contents of the timeStamp component of the atnEstablish security item time as TimeField, and

d. the User Data as userData.

g) Set the checkResult according to:

a. The fact that the Remote Peer’s signing public key certificate is not revoked,

b. The result of the validity check on the Remote Peer’s signing public key certificate path as described in 8.4.5,

c. The result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AVP function, with the following inputs:
i. SignData’ takes the value of the data to be signed as built in f) above,

ii. r’ and s’ take the content of the appendix field of the atnSignature security exchange item, and

iii. Q takes the value of the signing public key as retrieved in b) above.

8.6.3.2.2 If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-SignCheck function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Update the number of messages exchanged from the Remote peer to the Local peer and verify that it does not exceed the maximum permitted.

c) Build the data for which an appendix has to be checked as a MacData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the current number of the message exchanged from the Remote peer to the Local peer, as counter,

d. if this is the first MAC appendix checked for the exchange, the random value computed in 8.6.3.5.2, as random,

e. if this is the first MAC appendix checked for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a) as atnSignature,

f. the User Data as userData

d) Set the checkResult according to the result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AMACVP function, with the following inputs:

a. MacData takes the value of the data built in d) above,

b. MacTag’ takes the contents of the appendix field of the atnSignature field of the security item.

c. MacKey takes the value of session key as retrieved in a) above.

1.4 SSO-ProtectSign function

2.1.1 Comments

8.6.3.3

Note 2
There should be an extensible ASN.1 structure defining the list of accepted Algorithm identifiers, instead of naming them here. This note should then be reworded as follows:

The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

8.6.3.3

Note 3 and

Note 4
According to SV 4, the Source peer is the initiator of the Dialogue and the Destination peer is the receiver of the Dialogue. As SSO-ProtectSign can be called by both the initiator and the receiver of the Dialogue, this interpretation may cause inconsistency.

I would propose to refer to “Local peer” and resp. “Remote peer” instead of “Source peer” and resp. “Destination peer” in the interface definition, and to modify SV 4 accordingly.

8.6.3.3

Note 6
The “Result” parameter refers to implementation considerations. Some implementation, which would not separate the code for the S-ASO and the cryptographic primitives won’t need such a parameter; for some other, the fact that the cryptographic primitive could be computed with success is clear by the fact that a result could be obtained. The “Result” parameter does not add anything in the SSO-ProtectSign functionality and should therefore be removed from the definition of the SSO-ProtectSign interface.

8.6.3.3.1 a)
Stated like this, this shall statement cannot be validated. It should be reworded as follows: build the Security Item using the functionality described in the SSO-ASP function when the Algorithm Identifier is the abstract value associated to ecdsa-with-SHA1.

8.6.3.3.1 Note
This statement refers to implementation considerations. There may be numerous other ways to know that the computation of the appendix is the first one, and additional parameters in function calls is one way to implement it.

This statement should be removed.

8.6.3.3.1 b)
Stated like this, this shall statement cannot be validated. Is should be reworded as follows: build the Security Item using the functionality described in the SSO-AMACP function when the Algorithm Identifier is the abstract value associated to hmac-with-SHA1-32.

8.6.3.3.1

a) and b)
Furthermore, there is no justification for this intermediate function call. This leads to unnecessary constraints on the architecture of the implementation. We should rather propose the list of actions to be taken and leave implementers choose the way they will group functionality under their implementation. I would propose to move the contents of SSO-ASP and SSO-AMACP here. This would lead to replace these statements with:

If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-ProtectSign function shall:

a) retrieve the Local Peer’s signature private key.

b) Build the data to be signed as a SignData containing:

d. the Local peer as sourcePeerId,

e. the Remote peer as destPeerId,

f. the current local system time as TimeField, and

g. the User Data as userData.

c) Compute the appendix using the functionality described in the ASP function, with the following inputs:

c. SignData takes the value of the data to be signed as built in b) above,

d. d takes the value of the local peer signature private key as retrieved in a) above.

d) Build an atnProtectSign security item, with:

a. the algorithmIdentifier field unset,

b. the validity field set to a timeStamp containing the TimeField as generated in b) above,

c. the unprotected field set to the User Data, and

d. the appendix field set to an ecdsa-Signature containing the signature computed in c) above,
If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-Sign function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Verify that the number of messages that have been sent between the Local and the Remote peers using the current session key does not exceed the maximum allowed.

Note.— The means used to do this control together with the maximum number of messages which can be sent using the current session key are a local implementation matter

c) Build the data for which an appendix has to be computed as a MacData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current number of the message sent from the local peer to the remote peer, as counter,

d. if this is the first MAC appendix computed for the exchange, the random value computed in 8.6.3.5.2, as random,

e. if this is the first MAC appendix computed for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a).as atnSignature,

f. the User Data as userData
d) Compute the appendix using the functionality described in the AMACP function, with the following inputs:

a. MacData takes the value of the data built in c) above,

b. MacKey takes the value of session key as retrieved in a) above.

e) Build an atnProtectSign security item, with:

a. the algorithmIdentifier field set to the Algorithm Identifier as specified as input,

b. the unprotected field set to the User Data,

c. the appendix field set to an hmac-Tag containing the appendix computed in d) above,

d. if this is the first MAC appendix computed for the exchange, the validity field set to a the random value computed in 8.6.3.5.2.5, as random.

Proposed modification

8.6.3.3 SSO-ProtectSign function

Note 1.— The parameters of the SSO-ProtectSign function are specified in Table 8.6-1.

Table 8.6‑1

Parameter Name
In
Out

Algorithm Identifier
M

Source Peer
M

Destination Peer
M

User Data
M

Security item

C

Note 2.— The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

Note 3.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 4.— The Remote Peer parameter refers to the entity that is to receive the output of this function and is an ASN.1 type ATNPeerId.

Note 5.— The User Data parameter refers to the data that is to be signed.

Note 5.— The Security Item parameter is the security item to be generated for sending to the Destination Peer and is an ASN.1 type ATNProtectSign. It contains the SSO-ProtectSign output.

8.6.3.3.1 If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-ProtectSign function shall:

a) Retrieve the Local Peer’s signature private key.

b) Build the data to be signed as a SignData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current local system time as TimeField, and

d. the User Data as userData.

c) Compute the appendix using the functionality described in the ASP function, with the following inputs:

a. SignData takes the value of the data to be signed as built in b) above,

b. d takes the value of the local peer signature private key as retrieved in a) above.

d) Return an atnProtectSign security item, with:

a. the algorithmIdentifier field unset,

b. the validity field set to a timeStamp containing the TimeField as generated in b) above,

c. the unprotected field set to the User Data, and

d. the appendix field set to an ecdsa-Signature containing the signature computed in c) above.

8.6.3.3.2 If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-ProtectSign function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Verify that the number of messages that have been sent between the Local and the Remote peers using the current session key does not exceed the maximum allowed.

Note.— The means used to do this control together with the maximum number of messages which can be sent using the current session key are a local implementation matter

c) Build the data for which an appendix has to be computed as a MacData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current number of the message sent from the local peer to the remote peer, as counter,

d. if this is the first MAC appendix computed for the exchange, the random value computed in 8.6.3.5.2, as random,

e. if this is the first MAC appendix computed for the exchange, the appendix field of the atnSignature previously computed in 8.6.3.1.1 c) or retrieved in 8.6.3.2.1 a) as atnSignature,

f. the User Data as userData
d) Compute the appendix using the functionality described in the AMACP function, with the following inputs:

a. MacData takes the value of the data built in 8.6.3.3.2 c),

b. MacKey takes the value of session key as retrieved in 8.6.3.3.2 a).

e) Build an atnProtectSign security item, with:

a. the algorithmIdentifier field set to the Algorithm Identifier as specified as input,

b. the unprotected field set to the User Data, and

c. the appendix field set to an hmac-Tag containing the appendix computed in 8.6.3.3.2 d)

d. if this is the first MAC appendix computed for the exchange, the validity field set to a the random value computed in 8.6.3.5.2, as random.
1.5 SSO-ProtectSignCheck function

2.1.2 Comments

8.6.3.4

Note 1
The user data should not be present here. The functionality of SSO-ProtectSignCheck is to check the security item, and for this, it does not need to access to the full user data.

This note should be removed, together with the associated parameter in the interface.

8.6.3.4

Note 2
There should be an extensible ASN.1 structure defining the list of accepted Algorithm identifiers, instead of naming them here. This note should then be reworded as follows:

The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

8.6.3.4

Note 3 and

Note 4
According to SV 4, the Source peer is the initiator of the Dialogue and the Destination peer is the receiver of the Dialogue. As SSO-ProtectSignCheck can be called by both the initiator and the receiver of the Dialogue, this interpretation may cause inconsistency.

I would propose to refer to “Local peer” and resp. “Remote peer” instead of “Source peer” and resp. “Destination peer” in the interface definition, and to modify SV 4 accordingly.

8.6.3.4

Note 7
In most statements of this document, the “Result” parameter refers to implementation considerations. Here it refers to the fact that the appendix could be check and that the result of this check was positive. In order to avoid confusion with other definitions in this document, the “Result” parameter should be renamed; we would propose “CheckResult”.

8.6.3.4.1

a)
Stated like this, this shall statement cannot be validated. It should be reworded as follows:

The SSO-ProtectSignCheck function, verifies the Security Item using the functionality described in the:

a) SSO-AVP, if the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, and

SSO-AMACVP , if the Algorithm Identifier is the abstract value associated to hmac-with-SHA1-32.

and sets CheckResult accordingly.

8.6.3.4.1

a) and

b)
Furthermore, there is no justification for this intermediate function call. This leads to unnecessary constraints on the architecture of the implementation. We should rather propose the list of actions to be taken and leave implementers choose of they will group functionality under their implementation. I would propose to move the contents of SSO-AVP and SSO-AMACVP here. This would lead to replace these statements with:

If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-ProtectSignCheck function shall:

a) (see comments on 8.6.3.11.1 a), and Note in comment table related to SSO-AVP)

b) Retrieve the Local Peer’s signing public key certificate path,

Note.— The way the local peer signing public key certificate path is retrieved is a local implementation matter.

c) Retrieve the current CRLs necessary to validate the Local Peer’s signing public key certificate path when a CRL distribution service
 can be accessed.

Note.— The method of retrieval of the CRLs is a local matter.

d) Verify that the Certificate is not revoked by checking in the current CRL.

e) Retrieve the signing public key from the subjectPublicKey field of the Local Peer’s signing public key certificate.

f) Build the data to be signed as a SignData containing:

d. the Remote peer as sourcePeerId,

e. the Local peer as destPeerId,

f. the contents of the timeStamp component of the atnEstablish security item time as TimeField, and

g. the User Data as userData.

g) Set the checkResult according to:

h. The fact that the Local Peer’s signing public key certificate is not revoked,

i. The result of the validity check on the certificate path as described in 8.4.5,

j. The result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AVP function, with the following inputs:

iv. SignData’ takes the value of the data to be signed as built in f) above,

v. r’ and s’ take the content of the appendix field of the atnSignature security exchange item, and

vi. Q takes the value of the signing public key as retrieved in b) above.

If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-SignCheck function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Update the number of messages exchanged from the Remote peer to the Local peer and verify that it does not exceed the maximum permitted.

c) Build the data for which an appendix has to be checked as a MacData containing:

g. the Remote peer as sourcePeerId,

h. the Local peer as destPeerId,

i. the current number of the message exchanged from the Remote peer and the Local peer, as counter,

j. if this is the first MAC appendix checked for the exchange, the random value computed in 8.6.3.5.2, as random,

k. if this is the first MAC appendix checked for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a) as atnSignature,

l. the User Data as userData

d) Set the checkResult according to the result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AMACVP function, with the following inputs:

d. MacData takes the value of the data built in d),

e. MacTag’ takes the contents of the appendix field of the atnSignature field of the security item.

f. MacKey takes the value of session key as retrieved in a)

Proposed modification

8.6.3.4 SSO-ProtectSignCheck function

Note 1.— The parameters of the SSO-SignCheck function are specified in Table 8.6-2.

Table 8.6‑2

Parameter Name
In
Out

Algorithm Identifier
M

Local Peer
M

Remote Peer
M

Security Item
M

CheckResult

3. M

Note 2.— The AlgorithmIdentifier parameter refers to the cryptographic primitive to be applied to User Data and takes one of the abstract values contained in AcceptedAlgorithmIdentifiers.

Note 3.— The Remote Peer parameter refers to the entity that generated the signature to be verified and is an ASN.1 type ATNPeerId.

Note 4.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 6.— The Security Item parameter is the security item received from the Local Peer and is an ASN.1 type ATNProtectSign. It contains the appendix to be verified.

8.6.3.4.1 If the Algorithm Identifier contains the abstract value associated to ecdsa-with-SHA1, then the SSO-SignCheck function shall:

taratata

a) (see comments on 8.6.3.11.1 a), and Note in comment table related to SSO-AVP)

b) Retrieve the Remote Peer’s signing public key certificate path,

Note.— The way the local peer signing public key certificate path is retrieved is a local implementation matter.

c) Retrieve the current CRLs necessary to validate the Remote Peer’s signing public key certificate path when a CRL distribution service
 can be accessed.

Note.— The method of retrieval of the CRLs is a local matter.

d) Verify that the Remote Peer’s signing public key certificate is not revoked by checking in the current CRL.

e) Retrieve the Remote’s Peer signing public key from the subjectPublicKey field of the Remote Peer’s signing public key certificate.

f) Build the data to be signed as a SignData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the contents of the timeStamp component of the atnEstablish security item time as TimeField, and

d. the unprotected field of the atnProtectSign security exchange item, as userData.

g) Set the checkResult according to:

a. The fact that the Remote Peer’s signing public key certificate is not revoked,

b. The result of the validity check on the Remote Peer’s signing public key certificate path as described in 8.4.5, and
c. The result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AVP function, with the following inputs:

i. SignData’ takes the value of the data to be signed as built in f) above,

ii. r’ and s’ take the content of the appendix field of the atnProtectSign security exchange item, and

iii. Q takes the value of the signing public key as retrieved in b) above.

8.6.3.4.2 If the Algorithm Identifier contains the abstract value associated to hmac-with-SHA1-32, then the SSO-SignCheck function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Update the number of messages exchanged from the Remote peer to the Local peer and verify that it does not exceed the maximum permitted.

c) Build the data for which an appendix has to be checked as a MacData containing:

a. the Remote peer as sourcePeerId,

d. the Local peer as destPeerId,

e. the current number of the message exchanged from the Remote peer to the Local peer, as counter,

f. if this is the first MAC appendix checked for the exchange, the random value computed in 8.6.3.5.2, as random,

g. if this is the first MAC appendix checked for the exchange, the appendix field retrieved in c) above, as atnSignature,

h. the unprotected field of the atnProtectSign security exchange item, as userData

d) Set the checkResult according to the result of the check on the appendix field of the atnProtectSign security exchange item, using the functionality described in the AMACVP function, with the following inputs:

a. MacData takes the value of the data built in d) above,

b. MacTag’ takes the contents of the appendix field of the atnSignature field of the security item.

c. MacKey takes the value of session key as retrieved in a) above.

SSO-SessionKey function

3.1.1 Comments

8.6.3.5

Note 1
The SSO-SessionKey needs a random value in order to compute the session key. This parameter might be received from the peer, or locally computed and sent to the peer.

When received, the random value should be provided as a parameter.

I would propose to add a new optional parameter “Unique”, set by the activator of the SSO-SessionKey function, and to modify SV 4 accordingly.

8.6.3.5

Note 2 and

Note 3
According to SV 4, the Source peer is the initiator of the Dialogue and the Destination peer is the receiver of the Dialogue. As SSO-SessionKey can be called by both the initiator and the receiver of the Dialogue, this interpretation may cause inconsistency.

I would propose to refer to “Local peer” and resp. “Remote peer” instead of “Calling peer” and resp. “Called peer” in the interface definition, and to modify SV 4 accordingly.

8.6.3.5

Note 5
The “Result” parameter refers to implementation considerations. Some implementation, which would not separate the code for the S-ASO and the cryptographic primitives won’t need such a parameter; for some other, the fact that the cryptographic primitive could be computed with success is clear by the fact that a result could be obtained. The “Result” parameter does not add anything in the SSO-SessionKey functionality and should therefore be removed from the definition of the SSO-SessionKey interface.

8.6.3.5

Note 6
This refers to implementation considerations. Depending upon implementation choices, the SSO could be part of the S-ASO code, distributed on another computing system…etc. The only need is to assure that the session key will be kept in a safe place.

This statement should be reworded as follow, in order to reflect this need:

Note 6 – The session key should be kept in a safe place and its access restricted to its use in appendices computation only.

8.6.3.5

Note 7
These notes should be removed.

8.6.3.5.1
SSO-Session has been defined in order to trigger retrieval or the computation of the session key. This statement should be replaced with:

If a session key for the local peer and the remote peer has been previously constructed and is still available, then, retrieve it.

If a session key for the local peer and the remote peer has not been previously constructed or is not available anymore, then he SSO-SessionKey function shall:

8.6.3.5.1

a)
“Called peer” should be replaced with “Remote peer”.

8.6.3.5.1

b)
Stated like this, this shall statement cannot be validated. Is should be reworded as follows:

Verify the remote peer's key agreement public key certificate path using the functionality described in the SSO-CertificateCheck function.

8.6.3.5.1.1
Stated like this, this shall statement cannot be validated:

a) The SSO does not implement any state table, the "stop" statement is more related to an implementation specification rather than to a functional description, which should be the only contents of the SARPs. As a consequence, there is no way to control/validate the fact that an implementation of the SSO functionality does a "Stop".

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.5.1.2
should be replaced with

Compute the shared secret value Z for the calling peer and the remote peer using the functionality described in the ASVDP function, with the following inputs:

a) dU takes the value of the Local Peer's key agreement private key, and

b) QV takes the value of the Remote Peer's key agreement public key as retrieved from the Remote Peer's key agreement public key certificate path.

8.6.3.5.1.3
Stated like this, this shall statement cannot be validated:

a) The SSO does not implement any state table, the "stop" statement is more related to an implementation specification rather than to a functional description, which should be the only contents of the SARPs. As a consequence, there is no way to control/validate the fact that an implementation of the SSO functionality does a "Stop".

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.5.1.4, and

8.6.3.5.1.5
should be replaced with:

d) if a shared public value for the local peer and remote peer has been previously constructed and is still available, then, retrieve it,

e) if a shared public value for the local peer and the remote peer has not been previously constructed or is not available anymore, then construct it by using the functionality described in the AKDF function with the following inputs:

a. Z takes the shared secret value for the local and the remote peers, as constructed in c) above,

b. keydatalen takes the value of 10 octets,

c. SharedInfo takes the value of the shared public value derivation which is built as the concatenation of:

i) a single octet with value 0016,

ii) the appendix retrieved in d) above, and

iii) a random value for the local and the remote peers.

Note.— The generation of the Random Value may be achieved using the ARVP from 8.5.6.1 if a true random value cannot be selected.

8.6.3.5.1.6,

Stated like this, this shall statement cannot be validated:

a) The SSO does not implement any state table, the "stop" statement is more related to an implementation specification rather than to a functional description, which should be the only contents of the SARPs. As a consequence, there is no way to control/validate the fact that an implementation of the SSO functionality does a "Stop".

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.5.1.7

a),

b) and

c)
should be replaced with:

f) Build the session key for the local and remote peers by using the functionality defined in the AKDF function with the following inputs:

a. Z takes the shared secret value for the local and the remote peers, as retrieved in 8.6.3.5.2.2,

b. keydatalen takes the value of 10 octets,

c. SharedInfo takes the value of the session key derivation information which is built as the concatenation of

· a single octet with value 0116
· the shared public value for the local and the remote peers as derived in d),

· the Airborne peer,

· the Ground peer.

8.6.3.5.1.8
Stated like this, this shall statement cannot be validated:

a) The SSO does not implement any state table, the "stop" statement is more related to an implementation specification rather than to a functional description, which should be the only contents of the SARPs. As a consequence, there is no way to control/validate the fact that an implementation of the SSO functionality does a "Stop".

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.5.1.9 a)
These are local implementation consideration, and I wonder if they should not be moved in a note, or in guidance material. The only requirement is that the number of exchange using the same key should not exceed a maximum value. Implementing this using a counter is an implementation choice.

8.6.3.5.1.9 b)
Stated like this, this shall statement cannot be validated:

b) The SSO does not implement any state table, the "stop" statement is more related to an implementation specification rather than to a functional description, which should be the only contents of the SARPs. As a consequence, there is no way to control/validate the fact that an implementation of the SSO functionality does a "Stop".

c) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

Proposed modification

8.6.3.5 SSO-SessionKey function

Note 1.— The parameters of the SSO-SessionKey function are specified in Table 8.6-5.

Table 8.6‑5

Parameter Name
In
Out

Local Peer
M

Remote Peer
M

Certificate Path
C

Unique
C

Note 2.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 3.— The Remote Peer parameter refers to a paired peer to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 4.— The Certificate Path parameter is the key agreement public key certificate path for the Remote Peer. It is included in the input when received from the Remote Peer. If it is not included in the input, the SSO will retrieve it from a certificate delivery service.

Note 5.— The session key should be kept in a safe place and its access restricted to its use in appendices computation only.

Note 8.— Airborne Peer refers to the air end system and is determined by the naming conventions used for the Calling Peer and Called Peer.

Note 9.— Ground Peer refers to the ground end system and is determined by the naming conventions used for the Calling Peer and Called Peer.

Note 10.— The Unique parameter is used in order to compute the session key. Its absence will trigger the computation of a new random value.

8.6.3.5.1 If a session key for the local peer and the remote peer has been previously constructed and is still available, then, retrieve it.

8.6.3.5.2 If a session key for the local peer and the remote peer has not been previously constructed or is not available anymore, then he SSO-SessionKey function shall:

a) Retrieve the remote peer’s key agreement public key certificate path when the Certificate Path parameter is not present as input.

Note.— The method of retrieving the key agreement public key for the Called Peer is a local matter.

b) Retrieve the current CRLs necessary to validate the remote peer's key agreement public key certificate path if a CRL distribution service
 can be accessed.

Note.— The method of retrieval of the CRLs is a local matter.

c) Verify that the Certificate is not revoked by checking in the current CRL.

d) Validate the Certificate Path according to the procedure described in section 8.4.5.

e) Retrieve the Local Peer’s key agreement private key,

f) Compute the shared secret value Z for the calling peer and the remote peer using the functionality described in the ASVDP function, with the following inputs:

a. dU takes the value of the Local Peer's key agreement private key as retrieved in c) above, and

b. QV takes the value of the Remote Peer's key agreement public key as retrieved from the subjectPublicKey field of the Remote Peer's key agreement public key certificate path.

g) If a shared public value for the local peer and remote peer has been previously constructed and is still available, then, retrieve it,

h) If a shared public value for the local peer and the remote peer has not been previously constructed or is not available anymore, then construct it by using the functionality described in the AKDF function with the following inputs:

a. Z takes the shared secret value for the local and the remote peers, as constructed in f) above,

b. keydatalen takes the value of 10 octets,

c. SharedInfo takes the value of the shared public value derivation which is built as the concatenation of:

i. a single octet with value 0016,

ii. the appendix field of the atnSignature as computed in 8.6.3.1.1 or checked in 8.6.3.2.1, and

iii. the random value provided in the “Unique” parameter, if present, or a locally generated random value for the local and the remote peers, otherwise.

Note.— The generation of the Random Value may be achieved using the ARVP from 8.5.6.1 if a true random value cannot be selected.

i) Retrieve, from the Local peer and the Remote peer, the Airborne peer identity as an ASN.1 type ATNPeerId.

j) Retrieve, from the Local peer and the Remote peer, the Ground peer identity as an ASN.1 type ATNPeerId.

k) Build the session key for the local and remote peers by using the functionality defined in the AKDF function with the following inputs:

a. Z takes the shared secret value for the local and the remote peers, as computed in f) above,

b. keydatalen takes the value of 10 octets,

c. SharedInfo takes the value of the session key derivation information which is built as the concatenation of:

i. a single octet with value 0116

ii. the shared public value for the local and the remote peers as retrieved in g) above or derived in h) above,

iii. the Airborne peer as retrieved in i) above,

iv. the Ground peer as retrieved in j) above.

SSO-CertificateCheck function

3.1.2 Comments

8.6.3.6

Note 2
This note is not coherent with (at least) what is stated in “8.6.3.11.1 c) invoke SSO-CertificateCheck to verify the Source Peer’s signing public key Certificate Path”.

- If we look at 8.6.3.6 Note 2, it is stated that the Certificate path which is given as input to the SSO-CertificateCheck function, is a key agreement public key certificate path,

- If we look at 8.6.3.11.1 c), it is stated that the certificate path given as input to the SSO-AVP function is a signing public key certificate path.

- If we look at 4.8.5.2.2.2.1 b), it is stated that, if present in the atnEstablish security exchange item, the certificate path given as input to the SSO-SignCheck function contains a certificate path related to a signing key certificate.

8.6.3.6

Note 3
In most statements of this document, the “Result” parameter refers to implementation considerations. Here it refers to the fact that the certificate path could be checked and that the result of this check was positive. In order to avoid confusion with other definitions in this document, the “Result” parameter should be renamed; we would propose “CheckResult”.

8.6.3.6.1 a) and

8.6.3.6.1 Note
The access to a CRL distribution service is part of this shall statement. What happens when there is no access to a CRL distribution service should also be described here, or, the “when the SSO has access to a CRL distribution service” part of the statement should be moved in the Note.

8.6.3.6.1 Note
The frequency at which the CRL distribution service is accessed is part of the access method, the “and how frequently the CRLs are retrieved” part of the sentence should be removed.

8.6.3.6.1 b)
The methods and the criteria used to check CRLs, or a pointer to a reference document (OSI/ITU-T standard, for example) containing this information, should be added here.

What has to be done in case of the absence of CRL (i.e. no access to CRL distribution service) should also be added here.

8.6.3.6.1.1
Stated like this, this shall statement cannot be validated:

a) There is no way to control/validate the fact that the SSO does a "Stop", and

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

c) In order to avoid confusion between internal and functional result, the “CheckResult” parameter should be used in order to state if the certificate was correct or not.

This statement should be removed.

8.6.3.6.1.2
This statement should be replaced with:

The Certificate Path shall be validated according to the procedure of section 8.4.5. and the CheckResult set accordingly to the abstract value “Success” or “Failure”.

8.6.3.6.1.3
Stated like this, this shall statement cannot be validated:

a) There is no way to control/validate the fact that the SSO does a "Stop", and

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

c) In order to avoid confusion between internal and functional result, the “CheckResult” parameter should be used in order to state if the certificate was correct or not.

This statement should be removed.

8.6.3.6.1.4
Stated like this, this shall statement cannot be validated: there is no way to control/validate the fact that the SSO does a "Stop".

This statement should be removed.

Proposed modification

8.6.3.6 SSO-CertificateCheck function

Note 1.— The parameters of the SSO-CertificateCheck function are specified in Table 8.6-6.

Table 8.6‑6

Parameter Name
In
Out

Certificate Path
M

checkResult

M

Note 2.— The Certificate Path parameter is the key agreement public key certificate path to be validated.

8.6.3.6.1 The SSO-CertificateCheck function shall:

a) Retrieve the current CRLs necessary to validate the Certificate Path when the SSO has access to a CRL distribution service.

Note.— The method of retrieval of the CRLs is a local matter.

b) verify that the Certificate is not revoked when the SSO has the CRL for the Certificate,

c) Validate the Certificate Path according to the procedure described in section 8.4.5. and set the CheckResult accordingly.

1.6 SSO-GetCertificatePath function

3.1.3 Comments

8.6.3.7

Note 2
In order to avoid confusion, I would propose to refer to “Local peer” instead of “Entity ID” in the interface definition, and to modify SV 4 accordingly.

8.6.3.7

Note 2
“Entity Identificatin” should be replaced with “Local peer”.

8.6.3.7

Note 3
There should be an extensible ASN.1 structure defining the list of accepted types for certificate paths, instead of naming them here. This note should then be reworded as follows:

Note 3.— The Key Usage parameter refers to the type of Certificate Path that is desired and is an ASN.1 type KeyUsage. Key Usage takes one of the abstract values contained in AcceptedKeyUsages.

8.6.3.7

Note 4
There is no definition of the “Calling peer”. It should be replaced with the “Local peer”.
The SSO-GetCertificatePath function is supposed to return:

· signature key certificate path of the system identified by the “Local peer” parameter, or

· key agreement public key certificate path of the system identified by the “Local peer” parameter.

This note should be reworded as follows:

Note 4.— The Certificate Path parameter is either the key agreement public key certificate path or the signature key certificate path for the system identified by the “Local peer” parameter.

8.6.3.7

Note 5
The “Result” parameter refers to implementation considerations. Some implementation, which would not separate the code for the S-ASO and the cryptographic primitives won’t need such a parameter; for some other, the fact that the cryptographic primitive could be computed with success is clear by the fact that a result could be obtained. The “Result” parameter does not add anything in the SSO-GetCertificatePath functionality and should therefore be removed from the definition of the SSO-GetCertificatePath interface.

This note should also be removed.

8.6.3.7.1

a)
It is not clear what does “Certificate Path for the public key according to Key Usage” exactly mean ?

This statement should be replaced with:

a) According to the “key usage” parameter, retrieve from the certificate delivery service, either the signature key certificate path, or the key agreement public key certificate path of the system identified by the “Local peer” parameter.

Note.— The method of retrieval of the Certificate Path is a local matter.

8.6.3.7.1

b)
There is no justification for this “intermediate function call”. This leads to unnecessary constraints on the architecture of the implementation. We should rather propose the list of actions to be taken and leave implementers choose of they will group functionality under their implementation.

This statement should be replaced with the following:

a) According to the “key usage” parameter, and if a CRL distribution service
 can be accessed , retrieve the current CRLs necessary to validate either the signature key certificate path, or the key agreement public key certificate path of the system identified by the “entity identification” parameter.

Note.— The method of retrieval of the CRLs is a local matter.

b) Verify that the retrieved certificate, associated to the certificate path retrieved in a) above, is not revoked by checking in the current CRL retrieved in b) above,

c) Following the procedure described in 8.4.5, verify the validity of the certificate path retrieved in a).

8.6.3.7.2
Stated like this, this shall statement cannot be validated:

a) There is no way to control/validate the fact that the SSO does a "Stop", and

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.7.3
Stated like this, this shall statement cannot be validated as there is no way to control/validate the fact that the SSO does a "Stop". Furthermore, the fact that the “returned” certificate is the one which has been retrieved and checked is implicit.

This statement should be replaced with:

d) Build the “Certificate path” with the certificate path retrieved and validated in a), b) and c) above.

Proposed modification

8.6.3.7 SSO-GetCertificatePath function

Note 1.— The parameters of the SSO-GetCertificatePath function are specified in Table 8.6‑7.

Table 8.6‑7

Parameter Name
In
Out

Local peer
M

Key Usage
M

Certificate Path

C

Note 2.— The Local peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 3.— The Key Usage parameter refers to the type of Certificate Path that is desired and is an ASN.1 type KeyUsage. Key Usage takes one of the abstract values contained in AcceptedKeyUsages.

Note 4.— The Certificate Path parameter is either the key agreement public key certificate path or the signature key certificate path for the system identified by the “Local peer” parameter.

8.6.3.7.1 The SSO-GetCertificatePath function shall:

a) If the abstract value of the “key usage” parameter is keyAgreement, then retrieve from the certificate delivery service the key agreement public key certificate path of the system identified by the “Local peer” parameter,

b) If the abstract value of the “key usage” parameter is digitalSignature, then retrieve from the certificate delivery service the signature key certificate path of the system identified by the “Local peer” parameter.

Note.— The method of retrieval of the Certificate Path is a local matter.

c) If a CRL distribution service
 can be accessed , retrieve the current CRLs necessary to validate the certificate path retrieved in a) or b) above.

Note.— The method of retrieval of the CRLs is a local matter.

d) Verify that the subjectPublicKey field of the certificate path retrieved in a) or b) above, is not revoked by checking in the current CRL retrieved in c) above,

e) Following the procedure described in 8.4.5, verify the validity of the certificate path retrieved in a) or b) above, and

1.7 SSO-GetPublicKey function

3.1.4 Comments

8.6.3.8

Note 2
Although not used by the upper layers, the same comment may apply to the “Calling peer” parameter.

In order to avoid any risk of misinterpretation, I would propose to refer to “Local peer” instead of “Calling peer” in the interface definition, and to modify references in other sub-volumes accordingly.

8.6.3.8

Note 3
This note is not very clear, I should be reworded as:

Note 3.— The Key Usage parameter refers to the type of Certificate Path that is desired and is an ASN.1 type KeyUsage. Key Usage takes one of the abstract values contained in AcceptedKeyUsages.

8.6.3.8

Note 5
The “Result” parameter refers to implementation considerations. Some implementation, which would not separate the code for the calling and the cryptographic primitives won’t need such a parameter; for some other, the fact that the cryptographic primitive could be computed with success is clear by the fact that a result could be obtained. The “Result” parameter does not add anything in the SSO-GetPublicKey functionality and should therefore be removed from the definition of the SSO- GetPublicKey interface.

This note should also be removed.

8.6.3.8.1
Stated like this, this shall statement cannot be validated. It should be reworded as follows:

The SSO- GetPublicKey function shall:

retrieve the Certificate Path for the public key according to Key Usage by using the functionality described in the SSO-GetPublicKey.

8.6.3.8.2
Stated like this, this shall statement cannot be validated:

a) The SSO does not implement any state table, the "stop" statement is more related to an implementation specification rather than to a functional description, which should be the only contents of the SARPs. As a consequence, there is no way to control/validate the fact that an implementation of the SSO functionality does a "Stop".

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.8.3
Should be reworded as follows:

Build the Public Key with the subjectPublicKey field of the Certificate Path for the public key.

Proposed modification

8.6.3.8 SSO-GetPublicKey function

Note 1.— The parameters of the SSO-GetPublicKey function are specified in Table 8.6-8.

Table 8.6‑8

Parameter Name
In
Out

Local Peer
M

Key Usage
M

Public Key

C

Result

M

Note 2.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 3.— The Key Usage parameter refers to the type of Certificate Path that is desired and is an ASN.1 type KeyUsage. Key Usage takes one of the abstract values contained in AcceptedKeyUsages.

Note 4.— The Public Key parameter is the key agreement public key for the Calling Peer. It is included in the output when the Result parameter is set to the abstract value ‘Success’.

8.6.3.8.1 The SSO-GetPublicKey shall:

a) retrieve the Certificate Path for the public key according to Key Usage by using the functionality described in the SSO-GetPublicKey,

b) retrieve the public key from the subjectPublicKey field of the Certificate Path for the public key.

1.8 SSO-Stop function

3.1.5 Comments

8.6.3.9

Note 2 and

Note 3
According to SV 4, the Source peer is the initiator of the Dialogue and the Destination peer is the receiver of the Dialogue. As SSO-Sign can be called by both the initiator and the receiver of the Dialogue, this interpretation may cause inconsistency.

I would propose to refer to “Local peer” and resp. “Remote peer” instead of “Source peer” and resp. “Destination peer” in the interface definition, and to modify SV 4 accordingly.

8.6.3.9

Note 4
“Sererity” should be replaced with Severity

8.6.3.9

a)
The SSO-Stop function shall :

a) remove the Shared Secret Value computed in 8.6.3.5.2 for the Local Peer and Remote Peer,

b) remove the Share Public Value computed in 8.6.3.5.2 for the Local Peer and Remote Peer,

c) reset the number of messages exchanged from the Local peer and the Remote peer,

d) reset the number of messages exchanged from the Remote peer and the Local peer,

e) remove the the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a), and

f) remove the Random Value computed in 8.6.3.5.2.

8.6.3.9

b) and

c)
The controls operated on these session keys together with their impact should be described where applied, not in a note here. These statements should be replaced with:

If the Severity indicator parameter has the abstract value “high”, the SSO-Stop function shall

a) remove the Session Key for the Calling Peer and Called Peer.

And the controls over older session keys moved in the associated parts of this document.

Proposed modification

8.6.3.9 SSO-Stop function

Note 1.— The parameters of the SSO-Stop function are specified in Table 8.6-9.

Table 8.6‑9

Parameter Name
In
Out

Local Peer
M

Remote Peer

Severity Indicator
M

M

Note 2.— The Local Peer parameter refers to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 3.— The Remote Peer parameter refers to a paired peer to the entity that invoked this function and is an ASN.1 type ATNPeerId.

Note 4.— The Severity Indicator parameter refers to whether or not the session key can be re-used and takes the abstract values of ‘high’ or ‘low’.

8.6.3.9.1 If the severity indicator parameter has the abstract value “low”, the SSO-Stop function shall:

a) remove the Shared Secret Value computed in 8.6.3.5.2 for the Local Peer and Remote Peer,

b) remove the Share Public Value computed in 8.6.3.5.2 for the Local Peer and Remote Peer,

c) reset the number of messages exchanged from the Local peer and the Remote peer,

d) reset the number of messages exchanged from the Remote peer and the Local peer,

e) remove the appendix field of the atnSignature as computed in 8.6.3.1.1 or checked in 8.6.3.2.1, and

f) remove the Random Value computed in 8.6.3.5.2.

8.6.3.9.2 If the Severity indicator parameter has the abstract value “high”, the SSO-Stop function shall remove the Session Key for the Calling Peer and Called Peer.

SSO-ASP function

3.1.6 Comments

8.6.3.10

Note
Same comment applies as for 8.6.3.1 Note 3 and Note 4: Source peer should be replaced with Local peer, and Destination peer should be replaced with Remote peer.

8.6.3.10.1

a)
There should be an indication of the method used to retrieve the local peer’s signature private key. Either:

a) it has been previously computed: a pointer to the associated statement is then needed,

b) it can be retrieved via a standard way: the retrieval procedure should be described, or a pointer to the description should be provided,

c) the retrieval process is a local implementation matter: this should be stated.

8.6.3.10.1

b) and

c)
These statements should be replaced with:

b) Build the data to be signed as a SignData containing:

a) the Local peer as sourcePeerId,

b) the Remote peer as destPeerId,

c) the current local system time as TimeField, and

d) the User Data as userData.

Note:

Is there any constraint on time accuracy, on clock synchronisation, …etc ?

8.6.3.10.1

d)
Stated like this, this shall statement cannot be validated; it should be replaced with

c) Compute the appendix using the functionality described in the ASP function, with the following inputs:

a. SignData takes the value of the data to be signed as built in b) above,

b. d takes the value of the local peer signature private key as retrieved in a) above.

8.6.3.10.1.1
As this is already stated in the formal definition of the SignData, this statement should be removed.

8.6.3.10.1.2
This statement should be removed.

8.6.3.10.1.3
Stated like this, this shall statement cannot be validated:

a) There is no way to control/validate the fact that the SSO does a "Stop", and

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.10.1.4

a) and

b)
This statement should be replaced with:

Return an atnSignature security item, with:

a) the algorithmIdentifier field unset,

b) the validity field set to a timeStamp containing the TimeField as generated in b) above,

c) the appendix field set to an ecdsa-Signature containing the signature computed in c) above.

8.6.3.10.1.4

c) and

Note
These statements should be removed.

8.6.3.10.1.4 d)
Stated like this, this shall statement cannot be validated: there is no way to control/validate the fact that the SSO does a "Stop".

This statement should be removed.

Proposed modification

8.6.3.10 SSO-ASP function

Note.— The parameters of the SSO-ASP function are those of the invoking external SSO function.

8.6.3.10.1 The SSO-ASP function shall:

a) retrieve the Local Peer’s signature private key.

b) Build the data to be signed as a SignData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current local system time as TimeField, and

d. the User Data as userData.

c) Compute the appendix using the functionality described in the ASP function, with the following inputs:

a. SignData takes the value of the data to be signed as built in b) above,

b. d takes the value of the local peer signature private key as retrieved in a) above.

d) Return an atnSignature security item, with:
a. the algorithmIdentifier field unset,
b. the validity field set to a timeStamp containing the TimeField as generated in b) above,
c. the appendix field set to an ecdsa-Signature containing the signature computed in c) above.
1.9 SSO-AVP function

3.1.7 Comments

8.6.3.11

Note 1
There is no further reference the AlgorithmIdentifier in this function, so if a formal interface is needed for it, the AlgorithmIdentifier parameter should be removed.

Furthermore, SSO-AVP can be “called” by both SSO-Sign and SSO-ProtectSign, which interfaces are different, in particular for what concerns the Certificate path.

8.6.3.11

Note 2
These “shorthand” may be confusing and lead to less formalism in the description of the SSO. Such a less formal approach is acceptable in Guidance materials, not in SARPs. The real formal terms should be used instead of their less formal equivalent, and this note should be removed.

8.6.3.11.1

a), and

Note
This statement and the associated note are far too vague. There should be a list of minimum required criteria which should be applied in order to check that the contents of the timeStamp field of the atnEstablish security item is valid. Otherwise, any verification method is valid, including the one which does not apply any verification criteria. This would then mean that the timeStamp field of the atnEstablish security item is useless, which means that it should be removed from the atnEstablish description.

I do not think that this is what is expected.

8.6.3.11.1

b)
As noted before, this is not coherent with 8.6.3.4 where there is no certificate path as input.

“Source peer” should be replaced with “Remote peer”.

There should be an indication of how to retrieve the signing public key certificate path: either there is a required method, which should be explained here, or this is a local implementation matter, which should also be stated here.

8.6.3.11.1 c)
Stated like this, this statement cannot be validated. It should be reworded as: verify the RemotePeer’s signing public key Certificate Path retrieved in 8.6.3.11.1 b) by using the functionality described in the SSO-CertificateCheck function.

8.6.3.11.2
Stated like this, this shall statement cannot be validated:

a) there is no way to control/validate the fact that the SSO does a "Stop", and

b) there should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.11.3

a)
There is no formal definition of "To Be Signed Data" nor of how it should be constructed. This statement should be replaced with:

d) Build the data to be signed as a SignData containing:

b) the Remote peer as sourcePeerId,

c) the Local peer as destPeerId,

d) the contents of the timeStamp component of the atnEstablish security item time as TimeField, and

e) the User Data as userData.

Note:

Is there any constraint on time accuracy, on clock synchronisation, …etc ?

8.6.3.11.3

b),

c), and

Note
These statements should be removed.

8.6.3.11.3

e)
Stated like this, this shall statement cannot be validated; it should be replaced with

Set the checkResult according to the result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AVP function, with the following inputs:

a) SignData’ takes the value of the data to be signed as built in 8.6.3.11.3 x),

b) r’ and s’ take the value of the content of the appendix field of the atnSignature security exchange item, and

c) Q takes the value of the signing public key as retrieved in 8.6.3.11.3 x).

8.6.3.11.3.1 and

Note
As this is already stated in the formal definition of the SignData, this statement should be removed.

8.6.3.11.3.2
Stated like this, this shall statement cannot be validated:

d) There is no way to control/validate the fact that the SSO does a "Stop", and

e) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.11.3.3
Stated like this, this shall statement cannot be validated: There is no way to control/validate the fact that the SSO does a "Stop".

This statement should be removed.

Proposed modification

8.6.3.11 SSO-AVP function

Note 1.— The parameters of the SSO-AVP function are those of the invoking external SSO function.

8.6.3.11.1 The SSO-AVP function shall:

a) (cf comment in table)

b) Retrieve the Remote Peer’s signing public key certificate path when the Security Item does not contain a Certificate Path.

Note.— The way the local peer signing public key certificate path is retrieved is a local implementation matter.

c) Verify the Remote Peer’s signing public key Certificate Path retrieved in 8.6.3.11.1 b) by using the functionality described in the SSO-CertificateCheck function.

d) Build the data to be signed as a SignData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the contents of the timeStamp component of the atnEstablish security item time as TimeField, and

d. the User Data as userData.

e) Retrieve the Remote peer’s signing public key from the Remote Peer’s signing public key certificate.

f) Set the checkResult according to:

a. The fact that the Remote Peer’s signing public key certificate is not revoked,

b. The result of the validity check on the Remote Peer’s signing public key certificate path as described in 8.4.5,

c. The result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AVP function, with the following inputs:

i. SignData’ takes the value of the data to be signed as built in f) above,

ii. r’ and s’ take the content of the appendix field of the atnSignature security exchange item, and

iii. Q takes the value of the signing public key as retrieved in b) above.

SSO-AMACP function

3.1.8 Comments

8.6.3.12

Note 2
These “shorthand” may be confusing and lead to less formalism in the description of the SSO. Such a less formal approach is acceptable in Guidance materials, not in SARPs. The real formal terms should be used instead of their less formal equivalent, and this note should be removed.

8.6.3.12.1

a)
This statement should be replaced with:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

8.6.3.12.1

b),

Note 1

c), and

Note 2
These are local implementation consideration, and I wonder if they should not be moved in a note, or in guidance material. The only requirement is that the number of exchange using the same key should not exceed a maximum value. Implementing this using a counter is an implementation choice.

These statements should be replaced with:

c) Verify that the number of messages that have been “securely” sent between the Local and the Remote peers does not exceed the maximum number.

Note.— The means used to do this control is a local implementation matter.

8.6.3.12.2
Stated like this, these shall statements cannot be validated:

a) There is no way to control/validate the fact that the SSO does a "Stop", and

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.12.3
This statement should be removed.

8.6.3.12.3

a),

Note, and

b)
The “First exchange” parameter is not defined.

According to WG1/SG2/WP 1808A chapter 3.3.1.1 3), this is part of the computation of the public shared value.

In order to stay conform with that document, the generation and selection of the random value should be moved to SSO-SessionKey definition in 8.6.3.5

8.6.3.12.3

c),

d) and

e)
Theses statements should be replaced with:

Build the data for which an appendix has to be computed as a MacData containing:

a) the Local peer as sourcePeerId,

b) the Remote peer as destPeerId,

c) the current number of the message sent from the local peer to the remote peer, as counter,

d) if this is the first appendix computed for the exchange, the random value computed in 8.6.3.5.2.5 b), as random,

e) if this is the first appendix computed for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 or retrieved in 8.6.3.2.1 as atnSignature,

f) the User Data as userData

8.6.3.12.3

f)
Stated like this, this shall statement cannot be validated; it should be replaced with

Compute the appendix using the functionality described in the AMACP function, with the following inputs:

a. MacData takes the value of the data built in a) above,

b. MacKey takes the value of session key as retrieved in a) above.

8.6.3.12.3.1 and

Note
As this is already stated in the formal definition of the MacData, this statement should be removed.

8.6.3.12.3.2
Stated like this, this shall statement cannot be validated:

a) There is no way to control/validate the fact that the SSO does a "Stop", and

b) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.12.3.3 b)
The SSO-Sign function does not generate an ATNProtectSign, but an ATNSignature. As the AMACP is also “activated” by the SSO-Sign, it should be able to generate an ATNProtectSign type.

Conforming to WP1808A, the security item returned should also include the random value computed by the ground.

This statement should be replaced with:

Build the “Security item”, with:

a. the algorithmIdentifier field set to the Algorithm Identifier of the algorithm used for computing the appendix in 8.6.3.12.3 f),

b. the appendix field set to an hmac-Tag containing the appendix computed in d) above.

c. if this is the first MAC appendix computed for the exchange, the validity field set to a the random value computed in 8.6.3.5.2, as random.

8.6.3.12.3.3 c)
Stated like this, this shall statement cannot be validated: There is no way to control/validate the fact that the SSO does a "Stop".

This statement should be removed.

Proposed modification

8.6.3.12 SSO-AMACP function

Note 1.— The parameters of the SSO-AMACP function are those of the invoking external SSO function.

8.6.3.12.1 The SSO-AMACP function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Verify that the number of messages that have been sent between the Local and the Remote peers using the current session key does not exceed the maximum allowed.

Note.— The means used to do this control together with the maximum number of messages which can be sent using the current session key are a local implementation matter

c) Build the data for which an appendix has to be computed as a MacData containing:

a. the Local peer as sourcePeerId,

b. the Remote peer as destPeerId,

c. the current number of the message exchanged from the Local peer and the Remote peer, as counter,

d. if this is the first MAC appendix computed for the exchange, the random value computed in 8.6.3.5.2.5 b), as random,

e. if this is the first MAC appendix computed for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 or retrieved in 8.6.3.2.1 as atnSignature,

f. the User Data as userData

d) Compute the appendix using the functionality described in the AMACP function, with the following inputs:

a. MacData takes the value of the data built in 8.6.3.12.1 c),

b. MacKey takes the value of session key as retrieved in 8.6.3.12.1 a).

e) Build the “Security item”, with:

a. the algorithmIdentifier field set to the Algorithm Identifier of the algorithm used for computing the appendix in 8.6.3.12.1 c),

b. the appendix field set to an hmac-Tag containing the appendix computed in 8.6.3.12.1 c)

1.10 SSO-AMACVP function

3.1.9 Comments

8.6.3.13

Note 1
There is no further reference the AlgorithmIdentifier in this function, so if a formal interface is needed for it, the AlgorithmIdentifier parameter should be removed.

8.6.3.13

Note 2
These “shorthand” may be confusing and lead to less formalism in the description of the SSO. Such a less formal approach is acceptable in Guidance materials, not in SARPs. The real formal terms should be used instead of their less formal equivalent, and this note should be removed.

8.6.3.13.1

a)
There is no random value as input to this function. The random value is implicitly retained when generated by the SSO-SessionKey function.

This statement should be removed.

8.6.3.13.1

b)
The functionality of the SSO-AMACVP is to check an appendix, not to trigger a session key computation.

This statement should be reworded as follows:

8.6.3.13.1 Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

8.6.3.13.2
Stated like this, this shall statement cannot be validated:

a) there is no way to control/validate the fact that the SSO does a "Stop", and

b) there should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.13.3 and

8.6.3.13.4
These are local implementation consideration, and I wonder if they should not be moved into a note, or in guidance material. The only requirement seems to be that the number of exchange using the same key should not exceed a maximum value. Implementing this using a counter is an implementation choice.

These statements should be replaced with:

8.6.13.2 Update the number of messages exchanged from the Remote peer to the Local peer and verify that it does not exceed the maximum permitted.

8.6.3.13.5

b)
Build the data for which an appendix has to be checked as a MacData containing:

d. the Remote peer as sourcePeerId,

e. the Local peer as destPeerId,

f. the current number of the message exchanged from the Remote peer and the Local peer, as counter,

g. if this is the first MAC appendix checked for the exchange, the random value computed in 8.6.3.5.2.5 b), as random,

h. if this is the first MAC appendix checked for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a) as atnSignature,

i. the User Data as userData

Set the checkResult according to the result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AMACVP function, with the following inputs:

a. MacData takes the value of the data built in 8.6.3.12.1 c),

b. MacTag’ takes the contents of the appendix field of the atnSignature field of the security item.

c. MacKey takes the value of session key as retrieved in 8.6.3.12.1 a).

8.6.3.13.5.1 and

Note
As this is already stated in the formal definition of the MacData, this statement should be removed.

8.6.3.13.5.2
Stated like this, this shall statement cannot be validated:

c) There is no way to control/validate the fact that the SSO does a "Stop", and

d) There should be an exception handling part in the description of the SSO describing the returned results of its functions in case of failure.

This statement should be removed.

8.6.3.13.5.3
This statement should be removed.

Proposed modification

8.6.3.13 SSO-AMACVP function

Note 1.— The parameters of the SSO-AMACVP function are those of the invoking external SSO function.

8.6.3.13.1 The SSO-AMACVP function shall:

a) Retrieve the Session Key for the Local Peer and Remote Peer as computed in 8.6.3.5. g)

b) Update the number of messages exchanged from the Remote peer to the Local peer and verify that it does not exceed the maximum permitted.

c) Retrieve the “the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a).”

d) Build the data for which an appendix has to be checked as a MacData containing:

a. the Remote peer as sourcePeerId,

b. the Local peer as destPeerId,

c. the current number of the message exchanged from the Remote peer to the Local peer, as counter,

d. if this is the first MAC appendix checked for the exchange, the random value computed in 8.6.3.5.2.5 b), as random,

e. if this is the first MAC appendix checked for the exchange, the appendix field of the atnSignature computed in 8.6.3.1.1 a) or retrieved in 8.6.3.2.1 a) as atnSignature,

f. the User Data as userData

e) Set the checkResult according to the result of the check on the appendix field of the atnSignature security exchange item, using the functionality described in the AMACVP function, with the following inputs:

a. MacData takes the value of the data built in 8.6.3.13.1 d),

b. MacTag’ takes the contents of the appendix field of the atnSignature field of the security item.

c. MacKey takes the value of session key as retrieved in 8.6.3.13.1 a)

1.11 Formal definition of security transformations

3.1.10 Comments

8.6.4

Note
This description should rather be related to the SSO internal ASN.1 definitions.

ATNSignature and ATNProtectSign are:

· analysed and filled for security information retrieval, checking,

· encoded and transferred by the S-ASO.

They should be moved to SV 4 definitions and imported here.

ATN PeerID should be imported from SV 4.8 but not from SV 4.9 ASN.1 definitions. Otherwise that would oblige any implementation of the S-ASO to include GACS ASN.1 definition.

8.6.4

Note
There is no textual description of actions, here, this note should be reworded as follows:

Note.— This chapter contains a description of the information internally used by the SSO.

I do not see any further use of atn-initial-encoding-rules in SV 8.6

This definition should be removed.

The ANPeerId should be defined as follows:

ATNPeerId ::= CHOICE {

apNameATNName,

apAddressAPAddress

}

ATNName ::= SEQUENCE {

locationID[1]ATNLocationType,

sysID[2]INTEGER OPTIONAL,

...

}

APAddress ::= CHOICE {

longTSAP[0]LongTsap,

shortTsap[1]ShortTsap

}

LongTsap ::= SEQUENCE {

rDPOCTET STRING (SIZE(5)),

shortTsapShortTsap

}

ShortTsap ::= SEQUENCE {

aRS[0]OCTET STRING (SIZE(3)) OPTIONAL,

‑‑ the aRS contains the ICAO 24 bit aircraft address when the ShortTsap

‑‑ belongs to an aircraft;

‑‑ or a ground address when the Short Tsap belongs to a ground system

locSysNselTsel[1]OCTET STRING (SIZE(10..11))

}

Proposed modification

8.6.4 Formal definitions of security transformations tc " Formal definitions of security transformations " \l 2

Note.— This chapter contains a description of the information internally used by the SSO.

ATNSSO {secids modules(2) atnSSO(2)}

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

-- EXPORTS ALL --

IMPORTS

AlgorithmIdentifier FROM

AuthenticationFramework {joint-iso-itu-t ds(5) module(1) authenticationFramework(7) 2}

ATNSignature, ATNProtectSign FROM

ATNSecurityExchanges {secids modules(2) atnSecurityExchanges(1)}

MacData ::= SEQUENCE {

sourcePeerId ATNPeerId,

destPeerId ATNPeerId,

counter INTEGER,

userData EXTERNAL,

random INTEGER OPTIONAL,

atnSignature ATNSignature OPTIONAL

}
SignData ::= SEQUENCE {

sourcePeerId ATNPeerId,

destPeerId ATNPeerId,

timeField GeneralizedTime,

userData EXTERNAL

}

END

Conclusion

Our main goal, in this activity, is to provide support to the WG1/SG2 in the task of giving the SV 8, and chapter 6 in particular, a level g in validation. With this respect, this paper is a contribution and aspires to be merged with other inputs to the validation.

From the results obtained using informal validation means (following of services and functions activations from dialogue to the SSO), no major issue has been raised against the SV 8 Chapter 6 with respect to the overall conformance to the reference document 3.

Inconsistency in the description of interfaces between the SSO and the S-ASO have been raised concerning the peer identifiers, in particular.

Other inconsistency have been raised which address the approach originally defined in the S-ASO and the description of the functions inside the SSO (the fact that the S-ASO expects SSO-Functions to build a given information, and that the SSO-Function actually builds another kind of information, is one example of major inconsistency).

Important concerns have also been raised concerning the fact that the SSO description deals too much with implementation concerns in shall statements. This restraints the freedom in implementation architecture, and is not acceptable.

Important concerns have been raised concerning the fact that a non neglect able number of shall statements cannot be validated (this is often due to the fact that they deal with implementation matters).

These are the main points of concern from CENA/FRAVI point of view.

WG1/SG2 is invited to review these comments and the solutions propose in order to solve the issues.

Once these concerns have been solved together with the comments dealing with other issues, we will consider that we will be able to go further in our validation activities, idem est, starting development activities.

� The name of SSO might be considered as abusive in this sense, although with the upper layers point of view, the SSO is both the interface to low level encrypting functions and the encrypting functions themselves.

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� I wonder if there must not be a better way to specify keydatalen in a SARPs document.

� What does "a single octet with value 0016" mean ?

� Idem note 1.

� What does "a single octet with value 0116" mean ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

� Beside the access method, is there any validity check to be applied to the CRL ? And should these checks be included in this sub-volume ?

