PDR M2020001 Discussion

Title:
ULCS CF State Table - atomic ASEs

PDR Submission Date:

14/02/2002

Summary of Defect:

The referenced note (sub-point 2) states "the new state that the CF enters after the action has been performed." While the following paragraph specifies that embedded ASEs are treated as atomic entities, and "the CF responds to any resulting output events from the ASE ...". In the state table cell STA0 and D-START req - "if p0 & ~p6: STA1 A-ASSOC req"

If processing through the ACSE ASE is followed, the CF will process the P-DATA req before returning to the CF and therefore will be in the wrong state.

Proposed SARPs amendment:

Change Paragraph 4.3.3.1.2.2 to the following:

"4.3.3.1.2.2
For the purpose of specifying CF behaviour, embedded ASEs (ATN-App ASE, ACSE, and ASO) shall be treated as atomic entities, such that when an input event is invoked by the CF, that event is processed to completion by the ASE and any resulting output events from the ASE are queued for the CF, all within the same logical processing thread.

< add additional Note>:

Note:-
This provision means that in the case that a state transition is associated with the event, that the state transition occurs between the completion of the ASE and before the CF processes the associated ASE output.

28 Feb 2002: SME Commentary:

The PDR is not understood. When the A-ASSOC req is invoked, and the state transitions to STA1, ACSE is assumed to behave as an atomic entity. That is, it is a "black box" which accepts the A-ASSOC req as input and, all being well, emits a P-CONNECT req (NOT P-DATA as stated by the PDR). The CF state table accepts the P-CONNECT req from ACSE lower service boundary, passes it to the presentation service and remains in STA1. It is therefore proposed to REJECT this PDR.

Email from Jim Moulton, 28 Feb 2002

The question is ...

When does the state change occur? If it occurs after the ACSE finishes processing and before the event from the ACSE is processed, then it is okay (but still unclear).

If the state change occurs after ACSE processing -- which includes processing of events to the CF from ACSE, then the state change must take place before calling ACSE.

In otherwords, the CF must be in STA1 before processing the P-Connect req -- how does it get there before the P-Connect req event? This actually happened in our implementation -- it is threaded in such a way that the events are processed sequentially -- without returning back to the CF until the entire thread D-start req -> A-associate req -> P-connect req -> supporting service. At this point it "un-winds" back through the recursive calls.

05 Apr 2002: SME Commentary:

Discussed at ATNP/SGB2 meeting, Phuket 13 Mar 2002.

Working literally through the CF provisions (either State Table (4.3.3.1.2.1.c.2) or text), state transitions occur AFTER the action (such as "Invoke the A-ASSOCIATE Request primitive" in 4.3.3.3.2.2.1.h) has been performed. In this example, the ACSE processing could be assumed to occur immediately upon invocation, i.e. BEFORE the CF state change to ASSOC-PENDING. The ACSE processing would result in an AARQ APDU being emitted (via P-CONNECT req), which is invalid in the NULL state. This potential problem has existed since the CF was first specified, and has not caused implementation problems until now. The simplest solution would seem to be a clarification that "invoking" a primitive is not like a procedure call; rather, it conceptually adds an event to a queue, for processing at the end of the current thread.

Proposed SARPs amendment:

In 4.3.3.1.2.2, REPLACE:

<<For the purpose of specifying CF behaviour, embedded ASEs (ATN-App ASE and ACSE) shall be treated as atomic entities, such that when an input event is invoked by the CF, that event is processed to completion by the ASE and the CF responds to any resulting output events from the ASE, all within the same logical processing thread.

Note:-
This provision avoids the need to specify further transient states within the CF. It does not imply any particular implementation architecture.>>

WITH:

<<For the purpose of specifying CF behaviour, the CF shall interact with embedded ASEs (ATN-App ASE, Security ASO and ACSE) via a conceptual queuing mechanism, such that when the CF action is to invoke an ASE primitive:

a) an input event is queued for subsequent processing by the ASE,

b) at the end of the end of the current logical processing thread, after any CF state transition, that event is then dequeued and processed to completion by the target ASE, which behaves as an atomic entity, and

c) the CF responds to any resulting output events from the ASE before any external input events are processed.

Note:-
This provision avoids the need to specify numerous transient states within the CF. It does not imply any particular implementation architecture.>>

Impact on Interoperability:
None, but literal implementation of the existing CF provisions would be unable to establish dialogues.

Email from Frédéric Picard, 05 Apr 2002

I think that "normal" implementers are smart enough to understand how state tables work in ATN ULCS and ASE SARPs. Up to now, they all have understood how to combine state changes and primitive invocations and how to correctly translate those into software code lines, and develop software in such a way useless or wrong states are not introduced. No such problems have been reported since the first implementations back in 1995. In addition, I'm not sure that talking about "conceptual queing mechanism" or "end of the end of the current logical processing thread" as proposed in the PDR resolution will clarify the SARPs and be understood the same way by everybody.

Even if I agree that there is an ambiguity in the current SARPs, I still think that this ambiguity does not cause interoperability problem. SARPs are already very detailled, we do not need in addition to explain implementers what they have to do. It is their job to figure out how to implement in real systems the functional specifications. Additional guidance could be added in Doc 9739 with no modification to Doc 9705.

Therefore, I propose to RESOLVE the PDR with additional explanations in GM only.

Revised SME proposal, 23 Apr 2002-04-23

The previous proposed solution to this PDR resulted in some adverse comments, hence this revised proposal. There is a definite bug in the Sub-Volume IV provisions and, although previous implementers have devised their own interoperable solutions, it should be fixed. It is proposed that additional Guidance Material should also be generated, giving an example of a logical processing thread and outlining possible alternative implementation approaches.

Proposed SARPs amendment:

In 4.3.3.1.2.2, REPLACE:

<<For the purpose of specifying CF behaviour, embedded ASEs (ATN-App ASE and ACSE) shall be treated as atomic entities, such that when an input event is invoked by the CF, that event is processed to completion by the ASE and the CF responds to any resulting output events from the ASE, all within the same logical processing thread.

Note:-
This provision avoids the need to specify further transient states within the CF. It does not imply any particular implementation architecture.>>

WITH:

<<When interacting with embedded ASEs (ATN-App ASE, Security ASO or ACSE) and the specified action is to invoke an ASE request or response primitive, the CF shall behave as though:

a) the invocation causes an input event to be generated for subsequent processing by the ASE;

b) the CF processing continues as described in the remainder of the current clause of the specification, and any CF state transition is performed before any action is taken by the ASE in response to the invoked primitive;

c) the ASE then behaves atomically, such that the input event is processed to completion by the ASE;

d) the CF responds to any resulting output events from the ASE before any other input events are processed.

Note:-
This provision avoids the need to specify numerous transient states within the CF. It describes a model of the CF in order to achieve the required external behaviour; it does not imply any particular implementation architecture.>>

